[bookmark: _GoBack]Supplementary material for manuscript Optimizing the diagnostic capacity for COVID-19 PCR testing for low resource and high demand settings: the development of information-dependent pooling protocol
Supplementary material Table of contents
1. Basic assumptions	1
2. Halving protocol overview	2
3. Generalized halving protocol overview	3
4. Splitting protocol overview	4
5. Hypercube protocol overview	6
6. Information dependent protocol (indept) overview	7
Appendix A. Halving protocol	15
Appendix B. Generalized halving protocol	17
Appendix C. Splitting protocol	18
Appendix D. Hypercube protocol	19
Appendix E. Indept protocol	20
Appendix F. Expected number of cycles for the information dependent protocol	21
Appendix G. Development of indeptSp protocol	24

[bookmark: _Toc60048044]1. Basic assumptions
The basic assumptions for the method development are:
1) Re-testing of the sample testing produces the same result (for ease of the calculation, errors are omitted at this stage);
2) If at least one sample in the pool yields the positive result when individually tested, the pool would be positive;
3) If all the samples in the pool individually tested give negative results, then the pool would be negative.

Further, we assume that one sample can be tested at most times and that maximal size for the sample pool is. Here we provide the results for and , but all formulas and algorithms can be generalized to any other pool size.

Let us define as the probability that true positive sample is tested positive and let us denote byprobability of false negative. Further, let be the probability that true negative sample is tested as negative and let us denote by probability of false positive. Let be the p of the positive samples in the set of analyzed samples. The probability that test will be positive, which corresponds to a prevalence in a population, is then defined as:

.
[bookmark: _Toc60048045]2. Halving protocol overview

Suppose that we have a pool of size that is tested positive, and that we want to test each sample. The first protocol under the assessment is the halving hit pool analysis (HHPA):
·
If our set () has only one sample and the pool is tested positive, then the (only) sample is positive – no further testing is need.
·

If has more than one samples, then we can divide this set in two halves, denoted and . Next, we perform the test on the S1 set. If it tests negative, then all the samples in this set are negative, while at least one sample from must be positive, so .
·

If is tested positive, then we have no knowledge about, hence besides testing , we should also test . If we test as negative, then all samples in are negative and otherwise.

Suppose that we have a set of samples with no prior knowledge about them. We can then use any set of samples and divide it into batches of size, where is optimized in such a way that expected number of tests per sample is minimal and that and (see Appendix A for details). Optimal values of are presented in the Supplementary Table 1 and the scheme of the protocol is shown in the Supplementary Figure 1.

[bookmark: _Hlk45736394]Supplementary Table 1. Initial batch size depending on and for the halving protocol
	

	

	
	2
	3
	4
	5
	6

	0.1%-2.9%
	2
	4
	8
	16
	32

	3.0%-5.0%
	2
	4
	8
	16
	16

[image:]Supplementary Figure 1. The halving protocol scheme

[bookmark: _Toc60048046]3. Generalized halving protocol overview

Suppose that we have a pool of size that is tested positive. We can apply the generalized halving hit pool analysis (GHHPA) as:
·

If has elements, then if , this element is positive and no further testing is need.
· Otherwise, test all elements except the last one. If at least one of them is tested positive, test the last one; and otherwise the last one is positive and it does not need to be tested.
·

If has elements where , then this set is divided in two halves and Next, if is tested as negative, then all samples in are negative and must be positive, so . If is tested positive, then we have no knowledge about hence besides testing , we should also test . If we then test as negative, then all samples in are negatives and otherwise .

Finally, any set of samples can be divided into batches of size , where and are optimized in such a way that expected number of tests per sample is minimal (see Appendix B for details) and that: and. Optimal values of are presented in the Supplementary Table 2 and the scheme is shown in the Supplementary Figure 2.

Supplementary Table 2. Initial batch size depending on and
	

	

	
	2
	3
	4
	5
	6

	0.1%
	
32
	
16
	
8
	
4
	
2

	0.2%
	
23
	
16
	
8
	
4
	
2

	0.3%
	
19
	
13
	
8
	
4
	
2

	0.4%
	
16
	
11
	
8
	
4
	
2

	0.5%
	
15
	
10
	
7
	
4
	
2

	0.6%
	
13
	
9
	
7
	
4
	
2

	0.7%
	
12
	
9
	
6
	
4
	
2

	0.8%
	
12
	
8
	
6
	
4
	
2

	0.9%
	
11
	
8
	
5
	
4
	
2

	1.0%
	
10
	
7
	
5
	
4
	
2

	1.1%-1.2%
	
10
	
7
	
5
	
3
	
2

	1.3%
	
9
	
6
	
5
	
3
	
2

	1.4%-1.5%
	
9
	
6
	
4
	
3
	
2

	1.6%
	
8
	
6
	
4
	
3
	
2

	1.7%
	
8
	
6
	
4
	
3
	
2

	1.8%-2.0%
	
8
	
5
	
4
	
3
	
2

	2.1%
	
7
	
5
	
4
	
3
	
2

	2.2%-2.7%
	
7
	
5
	
3
	
2
	
2

	2.8%-2.9%
	
6
	
4
	
3
	
2
	
2

	3.0%-3.9%
	
6
	
4
	
3
	
2
	
2

	4.0%-4.6%
	
5
	
4
	
3
	
2
	
2

	4.7%-5.0%
	
5
	
3
	
2
	
2
	
2

[image:]
Supplementary Figure 2. The generalized halving protocol scheme

[bookmark: _Toc60048047]4. Splitting protocol overview

Splitting protocol generalizes halving protocol in such a way that one does not necessarily divide the observed set in two sets of equal size, but any number of sets of equal size. Suppose that we have a pool of samples of size , where . The following procedure splitting hit pool analysis (SHPA) can be applied:
·

If has elements and if , with this element tested as positive, then no further testing is need. Otherwise, test all elements except the last one. If at least one of them is tested as positive, test the last one; and otherwise the last one is positive and it does not need to be tested.
·

If has elements, where, then set can be divided into sets of the same sizes. Sets , are tested – if all of them are negative, then is positive and does not need to be tested and otherwise is also tested. For each set that is tested as negative, we know that all samples in it are also negative and for each set that is positive, we apply recursively .

Finally, any set of samples can be divided into batches of size , where factors in this product are optimized in such a way that expected number of tests per sample is minimal (see Appendix C for details) and that: and. Optimal values of the initial batch and every subsequent subdivision are presented in the Supplementary Table 3.

Supplementary Table 3. Initial batch size and pool sizes depending on and .
	

	

	
	2
	3
	4
	5
	6

	0.1%
	32,1
	32,4,1
	32,8,2,1
	32,8,4,2,1
	32,16,8,4,2,1

	0.2%
	23,1
	32,4,1
	32,8,2,1
	32,8,4,2,1
	32,16,8,4,2,1

	0.3%
	19,1
	30,5,1
	32,8,2,1
	32,8,4,2,1
	32,16,8,4,2,1

	0.4%
	16,1
	30,5,1
	32,8,2,1
	32,8,4,2,1
	32,16,8,4,2,1

	0.5%
	15,1
	30,5,1
	32,8,2,1
	32,8,4,2,1
	32,16,8,4,2,1

	0.6%
	13,1
	30,5,1
	32,8,2,1
	32,8,4,2,1
	32,16,8,4,2,1

	0.7%
	12,1
	30,5,1
	27,9,3,1
	32,8,4,2,1
	32,16,8,4,2,1

	0.8%
	12,1
	25,5,1
	27,9,3,1
	32,8,4,2,1
	32,16,8,4,2,1

	0.9%
	11,1
	25,5,1
	27,9,3,1
	32,8,4,2,1
	32,16,8,4,2,1

	1.0%-1.1%
	10,1
	25,5,1
	27,9,3,1
	32,8,4,2,1
	32,16,8,4,2,1

	1.2%
	10,1
	20,4,1
	27,9,3,1
	32,8,4,2,1
	32,16,8,4,2,1

	1.3%-1.5%
	9,1
	20,4,1
	27,9,3,1
	32,8,4,2,1
	32,16,8,4,2,1

	1.6%-2.0%
	8,1
	16,4,1
	27,9,3,1
	24,8,4,2,1
	32,16,8,4,2,1

	2.1%
	7,1
	16,4,1
	27,9,3,1
	24,8,4,2,1
	32,16,8,4,2,1

	2.2%-2.3%
	7,1
	16,4,1
	18,6,2,1
	24,8,4,2,1
	32,16,8,4,2,1

	2.4%-2.7%
	7,1
	12,3,1
	18,6,2,1
	24,8,4,2,1
	32,16,8,4,2,1

	2.8%-2.9%
	6,1
	12,3,1
	18,6,2,1
	16,8,4,2,1
	32,16,8,4,2,1

	3.0%-3.2%
	6,1
	12,3,1
	18,6,2,1
	16,8,4,2,1
	16,8,4,2,1

	3.3%-3.5%
	6,1
	12,3,1
	12,4,2,1
	16,8,4,2,1
	16,8,4,2,1

	3.6%-3.9%
	6,1
	9,3,1
	12,4,2,1
	16,8,4,2,1
	16,8,4,2,1

	4.0%-5.0%
	5,1
	9,3,1
	12,4,2,1
	16,8,4,2,1
	16,8,4,2,1

[image:]
Supplementary Figure 3. The splitting protocol scheme

[bookmark: _Toc60048048]5. Hypercube protocol overview

Let us analyze the expected number of tests of the hypercube-algorithm when each sample is tested at most times, i.e. when – calculation presented here could be easily generalized to arbitrary number of maximal testing per sample, but seems very reasonable for providing comparison between methods considering pool sizes available. Further, we shall limit maximal pool size to . Value is chosen, because it is which allows hypercube method to demonstrate its full potential and makes comparison skewed in the favor of hypercube method. Again, all calculation for can be easily generalized to any other value of .

We shall analyze hypercube starting with initial pools of samples where . Note that the first test is needed for each sample (in the pool of samples). Hence, in the first round expected number of tests per sample is . Sample will be tested for the second time only if at least one sample tested in the same pool with it was positive, i.e. with probability . Hence, the expected number of tests per sample in this round is . Sample will be tested third time only if it was in the second round of testing in the pool of samples in which at least one was positive. Hence, the expected number of tests in this round is . Continuing analogously, we can get that the expected number of tests in the -th round of testing, where is:

	.
Hence, expected number of tests per sample is:

	.
Therefore, optimal number of tests can be calculated as:

	.

Let us denote by and optimal values for given . Note that each negative test will be tested in the first round. In the second round, it will be tested if at least one of in the first pool in which it is tested is positive. It will be tested in the third round if at least one of samples is positive and so on. Hence, the expected number of tests for the negative sample is:

.

[bookmark: _Toc60048049]6. Information dependent protocol (indept) overview
This protocol utilizes all available information from the laboratory work to optimize the savings. In order to do so, the samples classified into sets:
·

 - set of samples that can be tested more times (or equivalently that are already tested times);
·

 - families of positive pools, where each positive pool contains samples that can be tested more times.

Obviously, at the beginning of testing, we only have one set and throughout testing every new sample that comes to testing facility is assigned to test . Optimal set of values and that should be tested as a single pool from sets and , respectively, is calculated in the Appendix D. Testing protocol is based on the following procedure:
·
In each pool there is only one sample that is tested as positive, so there is no need for testing such pools;
·

If , then in each pool test pool of samples. If this pool is negative, then all samples in it are negatives and we know, without testing, that pool of remaining samples is positive, so we add this pool to .
·

If this pool is tested as positive, then it is added to set of pools . Note that we have no knowledge about remaining samples except that they can be tested more times, hence we add these samples to the set .
·

Test pool of samples from the set . If it is tested as negative, all these samples are negative; and otherwise it is added as new pool to .

Note, that in this algorithm, we try to maximally utilize all information that we have about each sample (Supplementary Figure 4). This will inevitably lead to more complex management of samples, in sense of time and effort required. Optimal values (when maximal pool size is 32) of numbers are presented in the Supplementary Table 4. Optimal values of are all equal to 1 and optimal values the number for are given in Supplementary Tables 5-9.

Supplementary Table 4. Optimal values of the numbers
	

	

	

	

	

	

	

	0.1%
	1
	32
	32
	32
	32
	32

	0.2%
	1
	23
	32
	32
	32
	32

	0.3%
	1
	19
	32
	32
	32
	32

	0.4%
	1
	16
	32
	32
	32
	32

	0.5%
	1
	15
	32
	32
	32
	32

	0.6%
	1
	13
	32
	32
	32
	32

	0.7%
	1
	12
	31
	32
	32
	32

	0.8%
	1
	12
	27
	32
	32
	32

	0.9%
	1
	11
	26
	32
	32
	32

	1.0%
	1
	10
	25
	32
	32
	32

	1.1%
	1
	10
	21
	32
	32
	32

	1.3%
	1
	9
	21
	30
	32
	32

	1.4%
	1
	9
	20
	28
	32
	32

	1.5%
	1
	9
	18
	27
	32
	32

	1.6%
	1
	8
	17
	25
	32
	32

	1.7%
	1
	8
	17
	25
	31
	32

	1.8%
	1
	8
	17
	23
	29
	32

	1.9%
	1
	8
	16
	23
	29
	32

	2.0%
	1
	8
	16
	22
	27
	31

	2.1%
	1
	7
	14
	21
	25
	28

	2.2%
	1
	7
	14
	20
	24
	27

	2.3%
	1
	7
	13
	19
	23
	27

	2.4%
	1
	7
	13
	18
	23
	26

	2.5%
	1
	7
	13
	18
	21
	24

	2.6%
	1
	7
	13
	17
	21
	24

	2.7%
	1
	7
	13
	17
	20
	23

	2.8%
	1
	6
	12
	16
	20
	22

	2.9%
	1
	6
	12
	16
	20
	22

	3.0%
	1
	6
	12
	16
	20
	21

	3.1%
	1
	6
	11
	16
	18
	21

	3.2%
	1
	6
	11
	16
	18
	20

	3.3%
	1
	6
	10
	15
	18
	20

	3.4%
	1
	6
	10
	14
	18
	19

	3.5%
	1
	6
	10
	14
	17
	19

	3.6%
	1
	6
	10
	14
	17
	18

	3.7%
	1
	6
	10
	14
	16
	18

	3.8%
	1
	6
	10
	13
	15
	17

	3.9%
	1
	6
	10
	13
	15
	16

	4.0%
	1
	5
	10
	13
	15
	16

	4.1%
	1
	5
	10
	13
	14
	15

	4.2%
	1
	5
	10
	12
	14
	15

	4.3%
	1
	5
	10
	12
	13
	14

	4.4%
	1
	5
	9
	11
	13
	14

	4.5%
	1
	5
	9
	11
	13
	14

	4.6%
	1
	5
	9
	11
	13
	14

	4.7%
	1
	5
	9
	11
	13
	14

	4.8%
	1
	5
	9
	11
	13
	13

	4.9%
	1
	5
	9
	11
	12
	13

	5.0%
	1
	5
	8
	11
	12
	13

Supplementary Table 5. Optimal values of the numbers depending on
	

	

	2-3
	(0.1%,5.0%)->1

	4-7
	(0.1%,5.0%)->2

	8-13
	(0.1%,5.0%)->3

	14
	(0.1%,1.2%)->4 (1.3%,5.0%)->3

	15
	(0.1%,2.1%)->4 (2.2%,5.0%)->3

	16
	(0.1%,3.2%)->4 (3.3%,5.0%)->3

	17-20
	(0.1%,5.0%)->4

	22
	(0.1%,0.4%)->5 (0.5%,5.0%)->4

	23
	(0.1%,0.7%)->5 (0.8%,5.0%)->4

	24
	(0.1%,1.0%)->5 (1.1%,5.0%)->4

	25
	(0.1%,1.5%)->5 (1.6%,5.0%)->4

	26
	(0.1%,2.8%)->5 (2.9%,5.0%)->4

	27
	(0.1%,2.9%)->5 (3.0%,5.0%)->4

	28-29
	(0.1%,3.1%)->5 (3.2%,5.0%)->4

	30-31
	(0.1%,3.9%)->5 (4.0%,5.0%)->4

	32
	(0.1%,0.2%)->6 (0.3%,4.1%)->5 (4.2%,5.0%)->4

Supplementary Table 6. Optimal values of the numbers depending on
	

	

	 2-3
	(0.1%,5.0%)->1

	 4-6
	(0.1%,5.0%)->2

	 7-8
	(0.1%,5.0%)->3

	 9
	(0.1%,0.2%)->4 (0.3%,5.0%)->3

	 10
	(0.1%,2.4%)->4 (2.5%,5.0%)->3

	 11
	(0.1%,5.0%)->4

	 12
	(0.1%,4.7%)->5 (4.8%,5.0%)->4

	 13-16
	(0.1%,5.0%)->5

	 17
	(0.1%,0.9%)->6 (1.0%,5.0%)->5

	 18
	(0.1%,3.3%)->6 (3.4%,5.0%)->5

	 19
	(0.1%,2.0%)->7 (2.1%,3.8%)->6 (3.9%,5.0%)->5

	 20
	(0.1%,2.4%)->7 (2.5%,4.5%)->6 (4.6%,5.0%)->5

	 21
	(0.1%,2.9%)->7 (3.0%,4.8%)->6 (4.9%,5.0%)->5

	 22
	(0.1%,2.9%)->7 (3.0%,5.0%)->6

	 23
	(0.1%,4.1%)->7 (4.2%,5.0%)->6

	 24
	(0.1%,4.3%)->7 (4.4%,5.0%)->6

	 25
	(0.1%,0.2%)->8 (0.3%,4.7%)->7 (4.8%,5.0%)->6

	 26
	(0.1%,1.4%)->8 (1.5%,5.0%)->7

	 27
	(0.1%,1.8%)->8 (1.9%,5.0%)->7

	 28
	(0.1%,1.3%)->9 (1.4%,2.0%)->8 (2.1%,5.0%)->7

	 29
	(0.1%,0.8%)->10 (0.9%,1.5%)->9 (1.6%,2.2%)->8 (2.3%,5.0%)->7

	 30
	(0.1%,1.0%)->10 (1.1%,1.7%)->9 (1.8%,2.3%)->8 (2.4%,5.0%)->7

	 31
	(0.1%,1.1%)->10 (1.2%,1.7%)->9 (1.8%,2.8%)->8 (2.9%,5.0%)->7

	 32
	(0.1%,1.1%)->10 (1.2%,2.2%)->9 (2.3%,3.1%)->8 (3.2%,5.0%)->7

Supplementary Table 7. Optimal values of the numbers depending on
	

	

	 2-3
	(0.1%,5.0%)->1

	 4-6
	(0.1%,5.0%)->2

	 7
	(0.1%,5.0%)->3

	 8-11
	(0.1%,5.0%)->4

	 12
	(0.1%,2.6%)->5 (2.7%,5.0%)->4

	 13
	(0.1%,5.0%)->5

	 14
	(0.1%,4.7%)->6 (4.8%,5.0%)->5

	 15
	(0.1%,3.3%)->7 (3.4%,5.0%)->6

	 16
	(0.1%,3.7%)->7 (3.8%,5.0%)->6

	 17
	(0.1%,4.2%)->7 (4.3%,5.0%)->6

	 18-19
	(0.1%,5.0%)->7

	 20
	(0.1%,0.3%)->8 (0.4%,5.0%)->7

	 21
	(0.1%,0.6%)->8 (0.7%,5.0%)->7

	 22
	(0.1%,3.0%)->8 (3.1%,5.0%)->7

	 23
	(0.1%,0.6%)->9 (0.7%,3.2%)->8 (3.3%,5.0%)->7

	 24
	(0.1%,0.2%)->10 (0.3%,2.4%)->9 (2.5%,3.5%)->8 (3.6%,5.0%)->7

	 25
	(0.1%,1.9%)->10 (2.0%,2.6%)->9 (2.7%,3.9%)->8 (4.0%,5.0%)->7

	 26
	(0.1%,1.8%)->11 (1.9%,2.0%)->10 (2.1%,2.9%)->9 (3.0%,4.5%)->8 (4.6%,5.0%)->7

	 27
	(0.1%,1.1%)->12 (1.2%,1.9%)->11 (2.0%,2.2%)->10 (2.3%,3.4%)->9 (3.5%,4.7%)->8 (4.8%,5.0%)->7

	 28
	(0.1%,1.2%)->12 (1.3%,2.1%)->11 (2.2%,2.6%)->10 (2.7%,3.5%)->9 (3.6%,5.0%)->8

	 29
	(0.1%,1.3%)->12 (1.4%,2.5%)->11 (2.6%,4.2%)->9 (4.3%,5.0%)->8

	 30
	(0.1%,1.5%)->12 (1.6%,2.5%)->11 (2.6%,3.1%)->10 (3.2%,4.3%)->9 (4.4%,5.0%)->8

	 31
	(0.1%,1.5%)->12 (1.6%,2.9%)->11 (3.0%,3.5%)->10 (3.6%,4.5%)->9 (4.6%,5.0%)->8

	 32
	(0.1%,1.8%)->12 (1.9%,3.3%)->11 (3.4%,3.7%)->10 (3.8%,4.7%)->9 (4.8%,5.0%)->8

Supplementary Table 8. Optimal values of the numbers depending on
	

	

	 2-3
	(0.1%,5.0%)->1

	 4-6
	(0.1%,5.0%)->2

	 7
	(0.1%,5.0%)->3

	 8-12
	(0.1%,5.0%)->4

	 13
	(0.1%,5.0%)->5

	 14
	(0.1%,5.0%)->6

	 15
	(0.1%,4.6%)->7 (4.7%,5.0%)->6

	 16
	(0.1%,3.3%)->8 (3.4%,5.0%)->7

	 17
	(0.1%,3.6%)->8 (3.7%,5.0%)->7

	 18
	(0.1%,3.9%)->8 (4.0%,5.0%)->7

	 19
	(0.1%,4.4%)->8 (4.5%,5.0%)->7

	 20
	(0.1%,4.8%)->8

	 21-23
	(0.1%,5.0%)->8

	 24
	(0.1%,3.7%)->9 (3.8%,5.0%)->8

	 25
	(0.1%,2.5%)->10 (2.6%,4.0%)->9 (4.1%,5.0%)->8

	 26
	(0.1%,1.1%)->11 (1.2%,3.1%)->10 (3.2%,4.3%)->9 (4.4%,5.0%)->8

	 27
	(0.1%,0.4%)->12 (0.5%,2.7%)->11 (2.8%,3.3%)->10 (3.4%,4.7%)->9 (4.8%,5.0%)->8

	 28
	(0.1%,2.1%)->12 (2.2%,2.9%)->11 (3.0%,3.6%)->10 (3.7%,5.0%)->9

	 29
	(0.1%,2.0%)->13 (2.1%,2.2%)->12 (2.3%,3.0%)->11 (3.1%,3.9%)->10 (4.0%,5.0%)->9

	 30
	(0.1%,1.6%)->14 (1.7%,2.1%)->13 (2.2%,2.3%)->12 (2.4%,3.3%)->11 (3.4%,4.2%)->10 (4.3%,5.0%)->9

	 31
	(0.1%,1.3%)->15 (1.4%,1.7%)->14 (1.8%,2.3%)->13 (2.4%,2.5%)->12 (2.6%,3.5%)->11 (3.6%,4.6%)->10 (4.7%,5.0%)->9

	 32
	(0.1%,1.3%)->15 (1.4%,1.8%)->14 (1.9%,2.5%)->13 (2.6%,3.8%)->11 (3.9%,4.9%)->10 (5.0%,5.0%)->9

Supplementary Table 9. Optimal values of the numbers depending on
	

	

	 2-3
	(0.1%,5.0%)->1

	 4-6
	(0.1%,5.0%)->2

	 7
	(0.1%,5.0%)->3

	 8-12
	(0.1%,5.0%)->4

	 13
	(0.1%,5.0%)->5

	 14
	(0.1%,5.0%)->6

	 15
	(0.1%,5.0%)->7

	 16
	(0.1%,4.2%)->8 (4.3%,5.0%)->7

	 17
	(0.1%,4.5%)->8 (4.6%,5.0%)->7

	 18
	(0.1%,4.9%)->8 (5.0%,5.0%)->7

	 19-23
	(0.1%,5.0%)->8

	 24
	(0.1%,2.6%)->9 (2.7%,5.0%)->8

	 25
	(0.1%,4.0%)->9 (4.1%,5.0%)->8

	 26
	(0.1%,3.5%)->10 (3.6%,4.3%)->9 (4.4%,5.0%)->8

	 27
	(0.1%,3.1%)->11 (3.2%,3.7%)->10 (3.8%,4.6%)->9 (4.7%,5.0%)->8

	 28
	(0.1%,2.7%)->12 (2.8%,3.3%)->11 (3.4%,3.9%)->10 (4.0%,4.9%)->9 (5.0%,5.0%)->8

	 29
	(0.1%,2.5%)->13 (2.6%,2.8%)->12 (2.9%,3.4%)->11 (3.5%,4.2%)->10 (4.3%,5.0%)->9

	 30
	(0.1%,2.2%)->14 (2.3%,2.6%)->13 (2.7%,2.9%)->12 (3.0%,3.7%)->11 (3.8%,4.5%)->10 (4.6%,5.0%)->9

	 31
	(0.1%,1.9%)->15 (2.0%,2.3%)->14 (2.4%,2.7%)->13 (2.8%,3.1%)->12 (3.2%,3.9%)->11 (4.0%,4.9%)->10 (5.0%,5.0%)->9

	 32
	(0.1%,1.5%)->16 (1.6%,2.0%)->15 (2.1%,2.4%)->14 (2.5%,2.9%)->13 (3.0%,3.3%)->12 (3.4%,4.2%)->11 (4.3%,5.0%)->10

Supplementary Figure 4. The information dependent protocol scheme. Example of the application of the information protocol for and . State of laboratory at the begging of one round of testing is presented in a) – samples that will be involved in the next round of testing are emphasized by gray color (, , and) . That round of testing is presented in b1-b4) where b1) explains testing of samples that have only one more test allowed, b2) two tests allowed, b3) three tests allowed and b4) four tests allowed. State of laboratory after that round of testing finished is presented in c) – samples involved in this round that are returned for further analyses are emphasized by gray color.
a)
[image:]

b1)
[image:]
b2)
[image:]
b3)
[image:]
b4)
[image:]

c)
[image:]

One problem that we noted is the longer duration of the processing of the entire pool for indept, compared to other protocols (Supplementary Table 5).
Supplementary Table 10. Comparison of the number of cycles needed to complete the entire diagnostic process for pool size P=64, when hypercube and indept protocol are compared
	Prevalence
	Number of cycles needed, positive result
	Ratio
	Number of cycles needed, negative result
	Ratio

	
	hypercube
	indept
	
	hypercube
	indept
	

	0.2
	4
	7.62
	1.91
	1
	1.15
	1.18

	0.4
	4
	7.65
	1.91
	2
	1.29
	1.32

	0.6
	4
	7.29
	1.82
	2
	1.42
	1.29

	0.8
	4
	7.00
	1.75
	2
	1.53
	1.23

	1
	4
	6.68
	1.67
	2
	1.64
	1.16

	1.2
	4
	6.55
	1.64
	2
	1.39
	1.40

	1.4
	4
	6.20
	1.55
	2
	1.44
	1.33

	1.6
	4
	6.15
	1.54
	2
	1.50
	1.28

	1.8
	4
	6.04
	1.51
	2
	1.55
	1.26

	2
	4
	5.93
	1.48
	2
	1.60
	1.24

	2.2
	4
	5.76
	1.44
	2
	1.65
	1.18

	2.4
	4
	5.58
	1.39
	2
	1.69
	1.13

	2.6
	4
	5.56
	1.39
	2
	1.74
	1.12

	2.8
	4
	5.44
	1.36
	2
	1.78
	1.09

	3
	4
	5.45
	1.36
	2
	1.82
	1.10

	3.2
	4
	5.43
	1.36
	2
	1.86
	1.10

	3.4
	4
	5.26
	1.31
	2
	1.90
	1.03

	3.6
	4
	5.27
	1.32
	2
	1.94
	1.04

	3.8
	4
	5.14
	1.28
	2
	1.98
	1.00

	4
	3
	5.15
	1.72
	2
	1.36
	1.49

	4.2
	3
	4.99
	1.66
	2
	1.37
	1.44

	4.4
	3
	4.85
	1.62
	2
	1.39
	1.39

	4.6
	3
	4.86
	1.62
	2
	1.40
	1.40

	4.8
	3
	4.87
	1.62
	2
	1.42
	1.41

	5
	3
	4.85
	1.62
	2
	1.43
	1.41

	Average±SD
	
	
	1.55±0.18
	
	
	1.24±0.14

In order to offset this, we modified the original indept protocol and enabled the initial branching, which optimizes the protocol for maximum savings (the original indept) or for maximum speed (indeptSp). The development of this protocol was made under the assumption that the negative test result is a priority, since the suspect cases (those who are sent to be tested), must be assumed as positive until they get the negative result (if truly negative). The main change in indeptSp compared to the indept is that at the last T cycle, all samples from the pool undergo individual testing. This reduces the waiting times, but also increases the number of tests that are required to complete the pooling and diagnostics process. In order to optimize the indeptSp protocol, we arbitrarily set the delay at 10%, 15% or 20% longer than the hypercube, and measured the gains in number of tests reduction. The results had shown that indeptSp outperformed the hypercube in all instances, and provided marginally longer processing times than hypercube (Supplementary Table 6).

Supplementary Table 11. Comparison of hypercube and indeptSp protocol outcomes by the ratio of percent of test utilized (rPTU), depending on the prevalence rates in the population, with three initial time delay settings of 10, 15 or 20% longer processing times
	Approach
	Parameter
	Values

	Processing time extension of 10%
	Ratio of tests used (indept over hypercube)
	0.84±0.04

	
	Waiting, time negative cases
	1.08±0.03

	
	Waiting, time positive cases
	1.41±0.15

	Processing time extension of 15%
	Ratio of tests used (indept over hypercube)
	0.82±0.02

	
	Waiting, time negative cases
	1.12±0.04

	
	Waiting, time positive cases
	1.45±0.15

	Processing time extension of 20%
	Ratio of tests used (indept over hypercube)
	0.82±0.02

	
	Waiting, time negative cases
	1.15±0.06

	
	Waiting, time positive cases
	1.48±0.17

[bookmark: _Toc60048050]Appendix A. Halving protocol

Let us inductively calculate the expected number of tests needed to analyze samples in the pool of size , which is positive. If , then there is only one sample in the pool and that sample is positive. Hence, no testing is needed, i.e. .

Now, let us assume that and let and be two halves of the observed pool. Let us distinguish three possibilities (that tester does not know in advance):

CASE 1: is negative.
Probability of this case is:

	

After testing , tester knows that is positive, hence the required number of tests is:

	.

CASE 2: is positive and is negative.
Probability of this case is:

	
and required number of tests is:

	.

CASE 3: and are both positive:
Probability of this case is:

	
and required number of tests is:

	.
Summing up, we get:

The required number of tests needed by this protocol if we start by testing pool of size about which we do now know anything is:

Finally, is selected such that it minimizes while respecting the conditions on the maximal pool size and maximal number of tests per sample, i.e. and .
[bookmark: _Toc60048051]Appendix B. Generalized halving protocol

Let us inductively calculate the expected number of tests needed to analyze samples in the pool of size , which was tested as positive. Let us observe the case . If , then we test first samples and we test the last sample unless the first tests are negative. Probability of such event is:

	,
Hence,

	

for . It can be seen that the above formula is also true for , because . Now, let us assume that and let and be two halves of the observed pool. Let us distinguish three possibilities (that tester does not know in advance) and apply calculation very similar to one presented in the Appendix A.

CASE 1: is negative.
Probability of this case is:

	

After testing , tester knows that is positive, hence the required number of tests is:

	.

CASE 2: is positive and is negative.
Probability of this case is:

	
and required number of tests is:

	.

CASE 3: and are both positive:
Probability of this case is:

	
and required number of tests is:

	.
Summing up, we get:

The required number of tests needed by this protocol if we start by testing pool of size about which we do now know anything is:

Finally, and are selected such that they minimizes while respecting the conditions on the maximal pool size and maximal number of tests per sample, i.e. that and .
[bookmark: _Toc60048052]Appendix C. Splitting protocol

Let us inductively calculate the expected number of tests needed to analyze samples in the pool of size , which was tested as positive. The case is solved completely analogously as inductive base in the Appendix B and we get:

	.

Now, let us assume that and let ,…, be division of the observed pool in sub-pools having the same number of elements. Note that probability that all sets will be negative is:

	.

Hence, expected initial number of tests to determine which of the pools are positives:

	 .

Probability that any set is positive is:

	.
Hence, expected number of positive results is:

	.
Therefore,

 The required number of tests needed by this protocol if we start by testing pool of size about which we do now know anything is:

Finally, are selected such that they minimizes while respecting the conditions on the maximal pool size and maximal number of tests per sample, i.e. that and .
[bookmark: _Toc60048053]Appendix D. Hypercube protocol

Let us analyze the expected number of tests of the hypercube-algorithm when each sample is tested at most times, i.e. when – calculation presented here could be easily generalized to arbitrary number of maximal testing per sample, but seems very reasonable for providing comparison between methods considering pool sizes available. Further, we shall limit maximal pool size to . Value is chosen, because it is which allows hypercube method to demonstrate its full potential savings. Notably, this value can be easily generalized to any other value of .

We shall analyze hypercube protocol by starting with initial pools of samples where. Note that the first test is needed for each sample (in the pool of samples). Hence, in the first testing cycle expected number of tests per sample is . Sample will be tested for the second time only if at least one sample tested in the same pool with it was positive, i.e. with probability. Hence, the expected number of tests per sample in this cycle is . Sample will be tested third time only if it was in the second cycle of testing in the pool of samples in which at least one was positive. Hence, the expected number of tests in this cycle is . Continuing analogously, we can get that the expected number of tests in the -th cycle of testing, where is:

	.
Hence, expected number of tests per sample is:

	.
Therefore, optimal number of tests can be calculated as:

	.

Let us denote by and optimal values for given . Note that each negative test will be tested in the first cycle. In the second cycle, it will be tested if at least one of in the first pool in which it is tested is positive. It will be tested in the third cycle if at least one of samples is positive and so on. Hence, the expected number of tests for the negative sample is:

.

[bookmark: _Toc60048054]Appendix E. Indept protocol

Let us calculate all values and by induction on . It can be easily seen that . Note that if we need to analyze hit pool of samples on each of which only on test is allowed, the only possibility is to test all of them individually except possibly the last one (if all other results are misses, then the last one is hit). Hence,

	.

Now, let us solve the problem for . First, let us calculate . Suppose that we test samples about which nothing is known. Probability that this pool is a miss is and probability that it is a hit is , hence, expected number of tests needed to examine this samples is:

	 .

Optimizing in order to minimize expected number of tests per sample, we get:

	, for each .

Now, let us calculate by induction on . If , then the only sample in the pool is hit, hence. Let us assume that . Note that probability that pool of size , contained in the hit pool of size , is a miss is equal to:

	.

In that case, we know that all these samples are misses and the remaining samples create hit pool, so expected number of tests needed to test them is .

On the other, hand if pool of size is hit, then we have no knowledge about remaining samples, hence:

This gives us all necessary formulas for the calculation of and .
[bookmark: _Toc60048055]Appendix F. Expected number of cycles for the information dependent protocol

Let us calculate the expected number of cycles needed for the sample to be processed in the information dependent protocol. Let denote the expected number of sample-cycles (unit analogous to man-hours for different job tasks, e.g. if 3 samples are processed in 2 cycles and 1 sample in 3 cycle, we have 9 sample-cycles) for all samples in the positive pool of samples that can be tested at most more times and let denotes expected waiting time per sample among the set of all samples that can be tested at most times (measured in cycles). Let and denote the same concepts when we restrict our attention to positive samples and let and denote the same concepts when we restrict our attention to negative samples.
Note that

because all the samples except the last one are tested in the first cycles and the conclusion about the last one cannot be made if one of the other samples is a positive, hence in that case it must be tested in the next cycle.

It holds that:

because all samples are tested ones. If the result is negative – all samples are misses and otherwise they form a positive pool of samples that can be tested at most times.
Further,

because after testing sub-pool of samples - negative result implies that all these samples are negative and remaining samples create positive pool of samples that can be tested at most more times; positive result implies that we have a positive result in pool of samples that can be tested at most times and samples that we do not know anything about that can be tested at most more times.

Let us note that conditional probability that sample is negative in the positive pool of size is equal to

	.

Hence, conditional probability that sample is positive in the positive pool of size is equal to:

 	.
Now, let us restrict out attention to positive samples. The calculation holds analogously as above:

	
It holds that:

and that:

	
Finally, let us restrict our attention to negative samples:

	
It holds that:

;

The calculation can be checked by testing it as:

	.

[image:]
Supplementary Figure 5. Comparison of processing time for hypercube and indept protocols, in detection of positive and negative results
	
[bookmark: _Toc60048056]Appendix G. Development of indeptSp protocol

This version of indept protocol utilizes previous assumptions - only in selecting value of it does not simply minimizes the number of tests, but minimizes this number under assumption that the expected time for processing negative sample may be at most 110% (respectively 115% and 120%) of expected time needed for processing negative sample by hypercube algorithm. This may lead to selection of the smaller values of (Supplementary Table 7).

Supplementary Table 12. Values of for indeptSp when maximal expected time for processing negative sample may be at most 110% (respectively 115% and 120%) of expected time needed for processing negative sample by hypercube algorithm
	

	Negative sample processing time delay

	
	110%
	115%
	120%

	0.2%
	47
	59
	64

	0.4%
	40
	45
	50

	0.6%
	36
	41
	45

	0.8%
	34
	38
	42

	1.0%
	32
	36
	37

	1.2%
	19
	21
	23

	1.4%
	18
	20
	22

	1.6%
	18
	20
	21

	1.8%
	17
	19
	21

	2.0%
	16
	18
	20

	2.2%
	16
	18
	20

	2.4%
	16
	18
	18

	2.6%
	16
	17
	17

	2.8%
	16
	16
	16

	3.0%
	15
	16
	16

	3.2%
	15
	16
	16

	3.4%
	14
	14
	14

	3.6%
	14
	14
	14

	3.8%
	13
	13
	13

	4.0%
	6
	7
	8

	4.2%
	6
	7
	7

	4.4%
	6
	7
	7

	4.6%
	6
	7
	7

	4.8%
	6
	7
	7

	5.0%
	6
	7
	7

image3.wmf
{

}

2,3,4,5,6

T

Î

image45.wmf
2

,

S

oleObject51.bin

oleObject52.bin

oleObject53.bin

oleObject54.bin

oleObject55.bin

oleObject56.bin

image46.wmf
2

t

r

×

oleObject57.bin

oleObject58.bin

oleObject3.bin

image47.wmf
r

oleObject59.bin

oleObject60.bin

image48.wmf
2

t

rP

×£

oleObject61.bin

image49.wmf
2

t

r

×

oleObject62.bin

image50.wmf
p

oleObject63.bin

oleObject64.bin

image4.wmf
32

P

=

image51.wmf
p

oleObject65.bin

image52.wmf
T

oleObject66.bin

image53.wmf
0

2

×

oleObject67.bin

image54.wmf
1

2

×

oleObject68.bin

image55.wmf
2

2

×

oleObject69.bin

oleObject4.bin

image56.wmf
3

2

×

oleObject70.bin

image57.wmf
4

2

×

oleObject71.bin

oleObject72.bin

oleObject73.bin

oleObject74.bin

oleObject75.bin

oleObject76.bin

oleObject77.bin

image5.wmf
p

t

oleObject78.bin

oleObject79.bin

oleObject80.bin

oleObject81.bin

oleObject82.bin

oleObject83.bin

oleObject84.bin

oleObject85.bin

oleObject86.bin

oleObject87.bin

oleObject5.bin

oleObject88.bin

oleObject89.bin

oleObject90.bin

oleObject91.bin

oleObject92.bin

oleObject93.bin

oleObject94.bin

oleObject95.bin

oleObject96.bin

oleObject97.bin

image6.wmf
1

np

ft

=-

oleObject98.bin

oleObject99.bin

oleObject100.bin

oleObject101.bin

oleObject102.bin

oleObject103.bin

oleObject104.bin

oleObject105.bin

oleObject106.bin

oleObject107.bin

oleObject6.bin

oleObject108.bin

oleObject109.bin

oleObject110.bin

oleObject111.bin

oleObject112.bin

oleObject113.bin

oleObject114.bin

oleObject115.bin

oleObject116.bin

oleObject117.bin

image7.wmf
n

t

oleObject118.bin

oleObject119.bin

oleObject120.bin

oleObject121.bin

oleObject122.bin

oleObject123.bin

oleObject124.bin

oleObject125.bin

oleObject126.bin

oleObject127.bin

oleObject7.bin

oleObject128.bin

oleObject129.bin

oleObject130.bin

oleObject131.bin

oleObject132.bin

oleObject133.bin

oleObject134.bin

oleObject135.bin

oleObject136.bin

oleObject137.bin

image8.wmf
1

pn

ft

=-

oleObject138.bin

oleObject139.bin

oleObject140.bin

oleObject141.bin

oleObject142.bin

oleObject143.bin

oleObject144.bin

oleObject145.bin

oleObject146.bin

oleObject147.bin

oleObject8.bin

oleObject148.bin

oleObject149.bin

oleObject150.bin

oleObject151.bin

oleObject152.bin

oleObject153.bin

oleObject154.bin

oleObject155.bin

oleObject156.bin

oleObject157.bin

image9.wmf
p

oleObject158.bin

oleObject159.bin

oleObject160.bin

oleObject161.bin

oleObject162.bin

oleObject163.bin

oleObject164.bin

oleObject165.bin

oleObject166.bin

oleObject167.bin

oleObject9.bin

oleObject168.bin

oleObject169.bin

oleObject170.bin

oleObject171.bin

oleObject172.bin

oleObject173.bin

oleObject174.bin

oleObject175.bin

oleObject176.bin

image58.png

image10.wmf
p

image59.wmf
12

...

k

ttt

×××

oleObject177.bin

image60.wmf
12

,,...,0

k

ttt

³

oleObject178.bin

oleObject179.bin

image61.wmf
1

t

oleObject180.bin

image62.wmf
1

1

t

=

oleObject181.bin

oleObject182.bin

oleObject10.bin

image63.wmf
12

...

q

ttt

×××

oleObject183.bin

image64.wmf
2

qk

££

oleObject184.bin

oleObject185.bin

image65.wmf
121

,,...,,

qq

tt

SSSS

-

oleObject186.bin

oleObject187.bin

image66.wmf
21

,...,

q

t

SS

-

oleObject188.bin

image11.wmf
(

)

1

pp

ptf

pp

=×+-×

image67.wmf
q

t

S

oleObject189.bin

image68.wmf
q

t

S

oleObject190.bin

image69.wmf
i

S

oleObject191.bin

image70.wmf
(

)

i

SHPAS

oleObject192.bin

image71.wmf
12

...

k

ttt

×××

oleObject193.bin

oleObject11.bin

image72.wmf
1

kT

+£

oleObject194.bin

image73.wmf
1

...

k

ttP

××£

oleObject195.bin

oleObject196.bin

image74.wmf
p

oleObject197.bin

oleObject198.bin

oleObject199.bin

image75.wmf
T

image12.wmf
2

k

oleObject200.bin

image76.png

image77.wmf
T

oleObject201.bin

image78.wmf
1

dT

+£

oleObject202.bin

image79.wmf
4

T

=

oleObject203.bin

image80.wmf
64

P

=

oleObject204.bin

oleObject12.bin

image81.wmf
64

oleObject205.bin

image82.wmf
3

4

oleObject206.bin

image83.wmf
64

P

=

oleObject207.bin

image84.wmf
P

oleObject208.bin

image85.wmf
d

x

oleObject209.bin

image13.wmf
S

image86.wmf
d

xP

£

oleObject210.bin

image87.wmf
d

x

oleObject211.bin

image88.wmf
1/

d

x

oleObject212.bin

image89.wmf
(

)

11

d

x

p

--

oleObject213.bin

image90.wmf
(

)

1

1

11

d

x

d

p

x

-

éù

--×

êú

ëû

oleObject214.bin

oleObject13.bin

image91.wmf
1

d

x

-

oleObject215.bin

image92.wmf
(

)

1

2

1

11

d

x

d

p

x

-

-

éù

--×

êú

ëû

oleObject216.bin

image93.wmf
r

oleObject217.bin

image94.wmf
2

r

³

oleObject218.bin

image95.wmf
(

)

2

1

1

11

dr

x

dr

p

x

-+

-+

éù

--×

êú

ëû

oleObject219.bin

image14.wmf
S

image96.wmf
(

)

(

)

21

1

1

21

1111

1111

drdr

dd

xx

ddrddr

rr

pp

xxxx

-++-

+

-+-

==

éùéù

+--×=+--×

êúêú

ëûëû

åå

oleObject220.bin

image97.wmf
(

)

1

,

1

1:

11

min11

dr

d

d

x

ddr

xd

r

dTxP

p

xx

+-

-

=

£-£

ìü

éù

+--×

íý

êú

ëû

îþ

å

oleObject221.bin

image98.wmf
(

)

xp

oleObject222.bin

image99.wmf
(

)

dp

oleObject223.bin

image100.wmf
p

oleObject224.bin

oleObject14.bin

image101.wmf
(

)

(

)

1

dp

xp

-

oleObject225.bin

image102.wmf
(

)

(

)

1

1

dp

xp

-

-

oleObject226.bin

image103.wmf
(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

1

11

11

11111

dpii

dpdp

xpxp

ii

pdpp

+-

--

==

éù

éù

+--=+--

êú

êú

ëû

ëû

åå

oleObject227.bin

image104.wmf
k

G

oleObject228.bin

image105.wmf
k

oleObject229.bin

image15.wmf
S

image106.wmf
Tk

-

oleObject230.bin

image107.wmf
(

)

{

}

,

1

,,,

,...,

ck

cardH

ckckck

HHH

=

oleObject231.bin

image108.wmf
,

i

ck

H

oleObject232.bin

image109.wmf
c

oleObject233.bin

image110.wmf
k

oleObject234.bin

oleObject15.bin

image111.wmf
T

G

oleObject235.bin

image112.wmf
T

G

oleObject236.bin

image113.wmf
k

g

oleObject237.bin

image114.wmf
,

ck

c

oleObject238.bin

image115.wmf
k

G

oleObject239.bin

image16.wmf
1

S

image116.wmf
,

i

ck

H

oleObject240.bin

image117.wmf
1,

i

k

H

oleObject241.bin

image118.wmf
2

c

³

oleObject242.bin

image119.wmf
,

i

ck

H

oleObject243.bin

image120.wmf
,

ck

c

oleObject244.bin

oleObject16.bin

image121.wmf
,

ck

c

c

-

oleObject245.bin

image122.wmf
,

,

ck

ck

H

c

-

oleObject246.bin

image123.wmf
,

,1

ck

k

H

c

-

oleObject247.bin

image124.wmf
,

ck

c

c

-

oleObject248.bin

image125.wmf
k

oleObject249.bin

image17.wmf
2

S

image126.wmf
k

G

oleObject250.bin

image127.wmf
k

g

oleObject251.bin

image128.wmf
k

G

oleObject252.bin

image129.wmf
,1

ck

H

-

oleObject253.bin

image130.wmf
k

g

oleObject254.bin

oleObject17.bin

image131.wmf
,1

c

c

oleObject255.bin

image132.wmf
,

ck

c

oleObject256.bin

image133.wmf
2,...,6

k

=

oleObject257.bin

image134.wmf
k

g

oleObject258.bin

image135.wmf
p

oleObject259.bin

image18.wmf
2

S

image136.wmf
1

g

oleObject260.bin

image137.wmf
2

g

oleObject261.bin

image138.wmf
3

g

oleObject262.bin

image139.wmf
4

g

oleObject263.bin

image140.wmf
5

g

oleObject264.bin

oleObject18.bin

image141.wmf
6

g

oleObject265.bin

image142.wmf
,2

c

c

oleObject266.bin

image143.wmf
p

oleObject267.bin

image144.wmf
c

oleObject268.bin

image145.wmf
,2

c

c

oleObject269.bin

image19.wmf
(

)

2

HHPAS

image146.wmf
,3

c

c

oleObject270.bin

oleObject271.bin

oleObject272.bin

image147.wmf
,3

c

c

oleObject273.bin

image148.wmf
,4

c

c

oleObject274.bin

oleObject275.bin

oleObject276.bin

oleObject19.bin

image149.wmf
,4

c

c

oleObject277.bin

image150.wmf
,5

c

c

oleObject278.bin

oleObject279.bin

oleObject280.bin

image151.wmf
,5

c

c

oleObject281.bin

image152.wmf
,6

c

c

oleObject282.bin

image20.wmf
1

S

oleObject283.bin

oleObject284.bin

image153.wmf
,6

c

c

oleObject285.bin

image154.wmf
4.4%

p

=

oleObject286.bin

image155.wmf
4

T

=

oleObject287.bin

image156.wmf
4

11

g

=

oleObject288.bin

oleObject20.bin

image157.wmf
3

9

g

=

oleObject289.bin

image158.wmf
2

5

g

=

oleObject290.bin

image159.wmf
1

1

g

=

oleObject291.bin

image160.png

image161.png

image162.png

image163.png

image21.wmf
2

S

image164.png

image165.png

image166.wmf
(

)

hk

oleObject292.bin

image167.wmf
2

k

oleObject293.bin

image168.wmf
0

k

=

oleObject294.bin

image169.wmf
(

)

00

h

=

oleObject295.bin

oleObject21.bin

image170.wmf
1

k

³

oleObject296.bin

image171.wmf
1

S

oleObject297.bin

image172.wmf
2

S

oleObject298.bin

image173.wmf
1

S

oleObject299.bin

image174.wmf
(

)

(

)

(

)

11

22

2

111

11

kk

k

pp

p

--

éù

êú

ëû

--

oleObject300.bin

image22.wmf
(

)

1

HHPAS

image175.wmf
1

S

oleObject301.bin

image176.wmf
2

S

oleObject302.bin

image177.wmf
(

)

11

hk

+-

oleObject303.bin

image178.wmf
1

S

oleObject304.bin

image179.wmf
2

S

oleObject305.bin

oleObject22.bin

image180.wmf
(

)

(

)

(

)

(

)

11

1

22

2

2

111

11

11

kk

k

k

pp

p

p

--

-

æö

éù

ç÷

êú

ëû

-×-

ç÷

--

ç÷

èø

oleObject306.bin

image181.wmf
(

)

21

hk

+-

oleObject307.bin

image182.wmf
1

S

oleObject308.bin

image183.wmf
2

S

oleObject309.bin

image184.wmf
(

)

(

)

(

)

(

)

11

1

22

2

2

111

111

11

kk

k

k

pp

p

p

--

-

æö

éù

ç÷

êú

ëû

éù

-×--

ç÷

êú

ëû

--

ç÷

èø

oleObject310.bin

image23.wmf
2

S

image185.wmf
(

)

221

hk

+-

oleObject311.bin

image186.wmf
(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

11

1

22

2

2

111

1111111.

11

kk

k

k

pp

hkhkphk

p

--

-

æö

éù

ç÷

êú

ëû

éù

=+-+-+---

ç÷

êú

ëû

--

ç÷

èø

oleObject312.bin

image187.wmf
(

)

gk

oleObject313.bin

image188.wmf
2

k

oleObject314.bin

image189.wmf
(

)

(

)

(

)

2

111

k

gkphk

éù

=+--×

êú

ëû

oleObject315.bin

oleObject23.bin

image190.wmf
k

oleObject316.bin

image191.wmf
(

)

/2

k

gk

oleObject317.bin

image192.wmf
2

k

P

£

oleObject318.bin

image193.wmf
1

kT

+£

oleObject319.bin

image194.wmf
(

)

,

hkn

oleObject320.bin

image24.wmf
2

S

image195.wmf
2

k

n

×

oleObject321.bin

oleObject322.bin

image196.wmf
2

n

³

oleObject323.bin

image197.wmf
1

n

-

oleObject324.bin

image198.wmf
1

n

-

oleObject325.bin

image199.wmf
(

)

(

)

1

1

11

n

n

pp

p

-

-×

--

oleObject24.bin

oleObject326.bin

image200.wmf
(

)

(

)

(

)

1

1

0,

11

n

n

pp

hnn

p

-

-×

=-

--

oleObject327.bin

image201.wmf
2

n

³

oleObject328.bin

image202.wmf
1

n

=

oleObject329.bin

image203.wmf
(

)

0,10

h

=

oleObject330.bin

oleObject331.bin

image25.wmf
2

S

oleObject332.bin

oleObject333.bin

oleObject334.bin

image204.wmf
(

)

(

)

(

)

11

22

2

111

11

kk

k

nn

n

pp

p

--

××

×

éù

êú

ëû

--

oleObject335.bin

oleObject336.bin

oleObject337.bin

image205.wmf
(

)

11,

hkn

+-

oleObject338.bin

oleObject339.bin

oleObject25.bin

oleObject340.bin

image206.wmf
(

)

(

)

(

)

(

)

11

1

22

2

2

111

11

11

kk

k

k

nn

n

n

pp

p

p

--

-

××

×

×

æö

éù

ç÷

êú

ëû

-×-

ç÷

--

ç÷

èø

oleObject341.bin

image207.wmf
(

)

21,

hkn

+-

oleObject342.bin

oleObject343.bin

oleObject344.bin

image208.wmf
(

)

(

)

(

)

(

)

11

1

22

2

2

111

111

11

kk

k

k

nn

n

n

pp

p

p

--

-

××

×

×

æö

éù

ç÷

êú

ëû

éù

-×--

ç÷

êú

ëû

--

ç÷

èø

oleObject345.bin

image209.wmf
(

)

221,

hkn

+-

image26.wmf
(

)

2

HHPAS

oleObject346.bin

image210.wmf
(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

11

1

22

2

2

111

11,11111,.

11

kk

k

k

nn

n

n

pp

hkhknphkn

p

--

-

××

×

×

æö

éù

ç÷

êú

ëû

éù

=+-+-+---

ç÷

êú

ëû

--

ç÷

èø

oleObject347.bin

image211.wmf
(

)

,

gkn

oleObject348.bin

image212.wmf
2

k

n

×

oleObject349.bin

image213.wmf
(

)

(

)

(

)

2

,111,

k

n

gknphkn

×

éù

=+--×

êú

ëû

oleObject350.bin

oleObject351.bin

oleObject26.bin

image214.wmf
n

oleObject352.bin

image215.wmf
(

)

(

)

,/2

k

gknn

×

oleObject353.bin

image216.wmf
2

k

nP

×£

oleObject354.bin

image217.wmf
1

kT

+£

oleObject355.bin

image218.wmf
(

)

12

,,...,

k

httt

oleObject356.bin

image27.wmf
2

k

image219.wmf
12

...

k

ttt

×××

oleObject357.bin

image220.wmf
1

k

=

oleObject358.bin

image221.wmf
(

)

(

)

(

)

1

1

1

11

1

11

t

t

pp

htt

p

-

-×

=-

--

oleObject359.bin

oleObject360.bin

oleObject361.bin

image222.wmf
k

t

S

oleObject362.bin

oleObject27.bin

image223.wmf
11

,...,

k

t

SS

-

oleObject363.bin

image224.wmf
(

)

(

)

(

)

(

)

1111

11

...1...

...

111

11

kkk

kk

ttttt

ttt

pp

p

--

-

×××-××

×××

éù

ëû

--

oleObject364.bin

image225.wmf
1

,...,

k

t

SS

oleObject365.bin

image226.wmf
(

)

(

)

(

)

(

)

1111

11

...1...

...

111

11

kkk

kk

ttttt

k

ttt

pp

t

p

--

-

×××-××

×××

éù

ëû

-

--

oleObject366.bin

image227.wmf
i

S

oleObject367.bin

image1.wmf
T

image28.wmf
2

t

image228.wmf
(

)

(

)

11

11

...

...

11

11

k

kk

tt

ttt

p

p

-

-

××

×××

--

--

oleObject368.bin

image229.wmf
(

)

(

)

11

11

...

...

11

11

k

kk

tt

k

ttt

p

t

p

-

-

××

×××

--

×

--

oleObject369.bin

image230.wmf
(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

1111

11

1111

...1...

...

1111

......

111

11

,...,,,...,.

1111

kkk

k

kkkk

ttttt

tt

kkkkk

tttttt

pp

p

httttthtt

pp

--

-

--

×××-××

××

--

××××××

éù

éù

--

ëû

êú

=-+××

êú

ëû

oleObject370.bin

image231.wmf
(

)

1

,...,

k

gtt

oleObject371.bin

image232.wmf
12

...

k

ttt

×××

oleObject372.bin

oleObject28.bin

image233.wmf
(

)

(

)

(

)

1

...

11

,...,111,...,

k

tt

kk

gttphtt

××

éù

=+--×

ëû

oleObject373.bin

image234.wmf
1

,...,

k

tt

oleObject374.bin

image235.wmf
(

)

(

)

11

..../...

kk

gtttt

××××

oleObject375.bin

image236.wmf
1

....

k

ttP

××£

oleObject376.bin

oleObject377.bin

oleObject378.bin

image29.wmf
t

oleObject379.bin

oleObject380.bin

oleObject381.bin

oleObject382.bin

oleObject383.bin

oleObject384.bin

oleObject385.bin

oleObject386.bin

oleObject387.bin

oleObject388.bin

oleObject29.bin

oleObject389.bin

oleObject390.bin

oleObject391.bin

oleObject392.bin

oleObject393.bin

oleObject394.bin

oleObject395.bin

oleObject396.bin

oleObject397.bin

oleObject398.bin

image30.wmf
1

tT

+£

oleObject399.bin

oleObject400.bin

oleObject401.bin

oleObject402.bin

oleObject403.bin

image237.wmf
k

g

oleObject404.bin

image238.wmf
,

ck

c

oleObject405.bin

image239.wmf
k

oleObject30.bin

oleObject406.bin

image240.wmf
1

1

g

=

oleObject407.bin

image241.wmf
c

oleObject408.bin

image242.wmf
(

)

(

)

(

)

(

)

(

)

(

)

(

)

111

,1

111

11

111111

ccc

c

ccc

pppppp

ccc

ppp

c

éù

=-+-=-

êú

êú

ëû

oleObject409.bin

image243.wmf
2

k

³

oleObject410.bin

image244.wmf
k

g

image31.wmf
2

t

P

£

oleObject411.bin

image245.wmf
s

oleObject412.bin

image246.wmf
(

)

1

s

p

-

oleObject413.bin

image247.wmf
(

)

11

s

p

--

oleObject414.bin

image248.wmf
s

oleObject415.bin

image249.wmf
(

)

(

)

(

)

11111,1

ss

pphsk

éù

-×+--×+-

éù

ëû

ëû

oleObject31.bin

oleObject416.bin

image250.wmf
s

oleObject417.bin

image251.wmf
(

)

(

)

,1

1

11111

min

ss

sk

k

sP

pp

s

c

g

-

££

éù

éù

-×+--×+

ëû

ëû

=

oleObject418.bin

image252.wmf
,2

ck

³

oleObject419.bin

image253.wmf
,

ck

c

oleObject420.bin

image254.wmf
c

image32.wmf
T

oleObject421.bin

image255.wmf
1

c

=

oleObject422.bin

image256.wmf
1,

0

k

c

=

oleObject423.bin

image257.wmf
2

c

³

oleObject424.bin

image258.wmf
s

oleObject425.bin

image259.wmf
c

oleObject32.bin

oleObject426.bin

image260.wmf
(

)

(

)

(

)

111

11

scs

c

pp

p

-

éù

ëû

--

oleObject427.bin

image261.wmf
cs

-

oleObject428.bin

image262.wmf
,

csk

c

-

oleObject429.bin

image263.wmf
s

oleObject430.bin

image264.wmf
cs

-

oleObject1.bin

image33.wmf
p

oleObject431.bin

image265.wmf
{

}

(

)

(

)

(

)

(

)

(

)

(

)

(

)

,,,1

1min1,

111111

min11.

1111

scsscs

ckcskskk

cc

scP

pppp

cs

pp

cccg

--

--

££-

ìü

éù

éùéù

ïï

ëûëû

êú

éù

=+×+-×+-

íý

ëû

êú

ïï

ëû

îþ

oleObject432.bin

oleObject433.bin

oleObject434.bin

image266.wmf
,

ck

w

oleObject435.bin

image267.wmf
c

oleObject436.bin

image268.wmf
k

oleObject33.bin

oleObject437.bin

image269.wmf
k

w

oleObject438.bin

image270.wmf
k

oleObject439.bin

image271.wmf
,

ck

w

+

oleObject440.bin

image272.wmf
k

w

+

oleObject441.bin

image273.wmf
,

ck

w

-

oleObject34.bin

oleObject442.bin

image274.wmf
k

w

-

oleObject443.bin

image275.wmf
(

)

(

)

1

,1

0,1;

11

,2,

11

c

c

c

c

p

w

cc

p

-

=

ì

ï

ï

éù

--

=

í

ëû

+>

ï

--

ï

î

oleObject444.bin

image276.wmf

oleObject445.bin

image277.wmf
(

)

,1

11

1,1;

1,1,

k

k

k

k

k

pw

k

w

k

g

g

g

-

ì

éù

--×

ëû

ï

+>

=

í

ï

=

î

oleObject446.bin

image278.wmf
k

g

image34.wmf
p

oleObject447.bin

image279.wmf
k

g

oleObject448.bin

image280.wmf
1

k

-

oleObject449.bin

image281.wmf
(

)

(

)

(

)

(

)

(

)

(

)

(

)

,,

,

,,

,

,

,

,1,

0,1;

111

11

,1,

111

1

11

ckck

ck

ckck

ck

c

ck

c

ck

c

kckk

c

c

pp

cw

p

w

c

pp

wcw

p

cc

c

cc

c

c

-

-

-

-

=

ì

ï

ìü

éù

ï

ëû

ïï

+×+

ï

ïï

ï

--

=

íïï

>

íý

ï

éù

éù

ïï

ï

ëû

êú

éù

+-×+-

ïï

ï

ëû

êú

--

ïï

ï

ëû

îþ

î

oleObject450.bin

image282.wmf
,

ck

c

oleObject451.bin

image283.wmf
,

ck

c

c

-

oleObject35.bin

oleObject452.bin

image284.wmf
k

oleObject453.bin

image285.wmf
,

ck

c

oleObject454.bin

image286.wmf
1

k

-

oleObject455.bin

image287.wmf
cs

-

oleObject456.bin

image288.wmf
k

image35.wmf
T

oleObject457.bin

image289.wmf
c

oleObject458.bin

image290.wmf
(

)

(

)

(

)

1

111

11

c

c

pp

p

-

éù

ëû

--

oleObject459.bin

image291.wmf
c

oleObject460.bin

image292.wmf
(

)

(

)

(

)

1

111

1

11

c

c

pp

p

-

éù

ëû

-

--

oleObject461.bin

image293.wmf
(

)

(

)

(

)

(

)

(

)

11

,1

0,1;

11111

1,2.

1111

cc

c

cc

c

pppp

w

cc

pp

--

+

=

ì

ï

ï

éù

éùéù

=

í

ëûëû

êú

-×+>

ï

êú

ï

ëû

î

oleObject36.bin

oleObject462.bin

image294.wmf
(

)

,1

11

1,1;

1,1,

k

k

k

k

k

pw

k

w

p

k

g

g

g

+

-

+

ì

éù

--×

ëû

ï

+>

=

í

×

ï

=

î

oleObject463.bin

image295.wmf
(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

,,

,

,,

,

1

,

,

,1,

0,1;

111111

1

1111

,1.

111

1

11

ckck

ck

ckck

ck

cc

ck

cc

ck

c

kckk

c

c

pppp

cw

pp

w

c

pp

wcwp

p

cc

c

cc

c

c

--

+

-

+

-

++

-

=

ì

ï

ìü

éù

éùéù

ï

ëûëû

ïï

êú

ï

-×+×+

ïï

êú

ï

=

ïï

íëû

>

íý

ï

éù

éù

ïï

ï

ëû

êú

éù

ïï

+-×+-×

ï

ëû

êú

ïï

--

ï

ëû

îþ

î

oleObject464.bin

image296.wmf
(

)

(

)

(

)

(

)

(

)

(

)

11

,1

0,1;

111111

,2.

1111

cc

c

cc

c

ppcpp

w

c

pp

--

-

=

ì

ï

ï

éùéù

=

í

ëûëû

+>

ï

ï

î

oleObject465.bin

image297.wmf
(

)

(

)

,1

11

1,1;

1

1,1,

k

k

k

k

k

pw

k

w

p

k

g

g

g

-

-

-

ì

éù

--×

ëû

ï

ï

+>

=

í

-×

ï

=

ï

î

oleObject466.bin

image298.wmf
(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

,,

,

,,

,

1

,

,1,

0,1;

111111

1111

,1.

111

11

11

ckck

ck

ckck

ck

cc

c

cc

ck

c

kckk

c

c

ppcpp

w

pp

w

c

pp

wcwp

p

cc

c

cc

c

c

--

-

-

-

-

--

-

=

ì

ï

ìü

éùéù

ï

ëûëû

ïï

+×+

ï

ïï

ï

=

íïï

>

íý

ï

éù

éù

ïï

ï

ëû

êú

éù

+-×+--

ïï

ï

ëû

êú

--

ïï

ï

ëû

îþ

î

image36.png

oleObject467.bin

image299.wmf
(

)

1

kkk

wpwpw

+-

=+-

oleObject468.bin

image300.png

image301.wmf
4

g

oleObject469.bin

image302.wmf
k

g

oleObject470.bin

image303.wmf
4

g

oleObject471.bin

image37.wmf
2

k

n

×

oleObject472.bin

oleObject37.bin

image2.wmf
P

oleObject38.bin

image38.wmf
0

2

n

×

oleObject39.bin

image39.wmf
1

n

=

oleObject40.bin

oleObject41.bin

image40.wmf
2

k

n

×

oleObject42.bin

image41.wmf
1

k

³

oleObject43.bin

oleObject2.bin

oleObject44.bin

image42.wmf
2

.

S

oleObject45.bin

image43.wmf
1

S

oleObject46.bin

image44.wmf
1

S

oleObject47.bin

oleObject48.bin

oleObject49.bin

oleObject50.bin

