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Validating a GPS-based approach to detect 
health facility visits against maternal response to 
prompted recall survey

Introduction Common approaches to measure health behaviors rely on partic-
ipant responses and are subject to bias. Technology-based alternatives, particu-
larly using GPS, address these biases while opening new channels for research. 
This study describes the development and implementation of a GPS-based ap-
proach to detect health facility visits in rural Pune district, India.

Methods Participants were mothers of under-five year old children within the 
Vadu Demographic Surveillance area. Participants received GPS-enabled smart-
phones pre-installed with a location-aware application to continuously record 
and transmit participant location data to a central server. Data were analyzed 
to identify health facility visits according to a parameter-based approach, opti-
mal thresholds of which were calibrated through a simulation exercise. Lists of 
GPS-detected health facility visits were generated at each of six follow-up home 
visits and reviewed with participants through prompted recall survey, confirm-
ing visits which were correctly identified. Detected visits were analyzed using 
logistic regression to explore factors associated with the identification of false 
positive GPS-detected visits.

Results We enrolled 200 participants and completed 1098 follow-up visits over 
the six-month study period. Prompted recall surveys were completed for 694 
follow-up visits with one or more GPS-detected health facility visits. While the 
approach performed well during calibration (positive predictive value (PPV) 
78%), performance was poor when applied to participant data. Only 440 of 
22 251 detected visits were confirmed (PPV 2%). False positives increased as 
participants spent more time in areas of high health facility density (odds ratio 
(OR) = 2.29, 95% confidence interval (CI) = 1.62-3.25). Visits detected at facil-
ities other than hospitals and clinics were also more likely to be false positives 
(OR = 2.78, 95% CI = 1.65-4.67) as were visits detected to facilities nearby par-
ticipant homes, with the likelihood decreasing as distance increased (OR = 0.89, 
95% CI = 0.82-0.97). Visit duration was not associated with confirmation status.

Conclusions The optimal parameter combination for health facility visits sim-
ulated by field workers substantially overestimated health visits from partici-
pant GPS data. This study provides useful insights into the challenges in de-
tecting health facility visits where providers are numerous, highly clustered 
within urban centers and located near residential areas of the population which 
they serve.
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An estimated 5.9 million children under five die each year globally with pneumo-
nia, malaria, and diarrhea among the leading causes [1]. Proven preventative and 
curative interventions exist to reduce mortality and morbidity from these causes 
yet their impact is limited by poor access to health care [2]. Data on various house-
hold health behaviors, including care-seeking for childhood illness, are common-
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ly collected through large-scale household surveys, such as the Demographic and Health Survey and the 
Multiple Indicator Cluster Survey [3,4]. These data typically rely on maternal self-report, the validity of 
which is subject to various biases [5]. Technology-based approaches to collect information on participant 
behavior, especially those using Global Positioning System (GPS) sensors, provide an alternative to sur-
vey-based approaches, minimizing the biases inherent in those traditional approaches while broadening 
the range of topics which may be explored [6]. Many such approaches have been applied to study health 
behaviors though their validity is not always explored and may depend both on the behavior being con-
sidered and the context within which it is being assessed.

GPS has been increasingly applied within the field of health research. Depending on satellite visibility 
and location, GPS receivers are capable of continuously determining their location with a precision of 
several meters [7]. Among the many applications of GPS are the study of disease exposure and transmis-
sion [8-10], environmental exposure [11,12], social interaction and exclusion [13,14], mobility-related 
illness outcomes [15], and physical activity [16]. While GPS has traditionally been measured through 
dedicated devices, GPS receivers have become a common feature in smartphones and have been shown 
to produce comparable data to traditional devices [11,17,18]. Furthermore, GPS-enabled smartphones 
supplement traditional approaches with data from the cellular network to improve the speed with which 
location data are obtained [18].

Raw participant GPS records include latitude, longitude, accuracy, and the time at which the coordinate was 
recorded. These records alone are insufficient to draw inferences about participant behaviors and require 
post-processing to extract meaningful data on periods of movement, travel mode, and significant locations 
visited [6]. Geofencing and cluster-detection approaches are two commonly used approaches to infer vis-
ited locations from participant GPS data [19-21]. Geofencing requires that the researcher knows the loca-
tion for each feature of interest (eg, health facility) where visits are to be detected. A boundary is then de-
fined around each feature, which may take the form of the building’s footprint or may be a radius about a 
specified point of interest. Participant GPS data are then examined for sequential points located within the 
specified boundary, classifying those points as a visit when the number of points or the duration between 
the first and last point meet some predefined threshold. Several cluster-based approaches exist for visit de-
tection with substantial variability in their methods [22-25] One example, ST-DBSCAN, identifies clusters 
according to three parameters: a minimum number of points, and a maximum spatial and non-spatial (eg, 
time) distance that these points are located from one another [26]. Cluster-based approaches are more flex-
ible than geofencing approaches in that they do not require any knowledge of where features are located, 
however they tend to require larger data sets and consequently increased computing power.

Both approaches require user-specified parameters, optimal values for which vary with study aim, setting, 
and the mechanics of the specific approach being applied. Overly restrictive parameters will fail to detect 
true visits while overly permissive parameters will falsely classify non-visits as visits. Studies identifying 
visited locations within participant movement data commonly apply duration thresholds of 20 to 30 min-
utes [14,20,27,28], though duration values as low as 5 minutes have been demonstrated to reliably detect 
activity locations [29]. The selection of a duration threshold relates to the behavior under investigation. 
In contrast to studies with the objective of identifying locations visited for any purpose, a study specifi-
cally identifying hospitalizations set a correspondingly higher duration threshold of 4 hours [19]. There 
is less convergence around an optimal distance threshold with even those studies using similar duration 
parameters applying distance values ranging from 10 to 200 m [14,28]. While several studies evaluate 
the performance of their approach after the fact, the specification of parameter values is typically based on 
a priori assumptions of optimal thresholds. A notable exception to this, Theirry et al. evaluated the per-
formance of six parameter sets on 750 simulated trajectories to determine the optimal values [29]. Such 
exercises require a calibrating data set where the true value is known for each record, which may not be 
feasible in all contexts. Given the sensitivity of visit detection approaches to parameter specification, the 
value of undertaking such a calibration exercise should not be overlooked.

The present study was conducted within the context of a larger study comparing maternally-reported 
care-seeking behavior with measures of care-seeking behavior derived from participant GPS data [30]. A 
two-step approach was used to detect health facility visits wherein: 1) optimal parameter values were first 
identified through a calibration exercise involving researcher simulated health facility visits and 2) these 
parameter thresholds were applied to the prospective detection of participant health facility visits, the per-
formance for which was assessed through monthly prompted recall surveys. This paper aims to describe 
the development and implementation of a GPS-based visit detection approach, evaluate its performance for 
correctly identifying health facility visits, and explore factors associated with maximizing its performance.
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METHODS

Study site and health facility census

We conducted a prospective cohort study in the 22 villages of the Vadu Health and Demographic Surveil-
lance System, located in rural Pune district, Maharashtra state, India (Figure 1). Prior to study initiation we 
conducted a census of all locations where a mother might seek care for childhood illness, including private, 
public, formal, and informal providers. Field workers classified each provider by type, obtaining the location 
coordinates for each provider using a handheld Garmin e-Trex GPS device (Garmin Ltd, Olathe, KS, USA).

Figure 1. Map of Vadu Health and Demographic Surveillance System (HDSS) within Maharashtra state and Pune 
district. Note: HDSS – Health and Demographic Surveillance System, km – kilometre. Reproduced with permis-
sion from Ingole et al. (2015) [31].

Participant enrollment and follow up

Participants were mothers ages 15-49 with at least one child under five years of age, randomly sampled 
from the population register of the Vadu HDSS and enrolled during field worker home visits. Consenting 
participants were randomly assigned to either the primary study group (“phone group”), cross-section-
al comparison group, or longitudinal comparison group. Participants in the phone group were provided 
with a GPS-enabled smartphone and visited monthly during the six-month study period. Comparison 
group participants were not provided with phones and were visited either once (cross-sectional group) or 
monthly (longitudinal group) over the study duration. These comparison groups were included to eval-
uate potential biases in reported care-seeking behavior resulting from providing participants with smart-
phones and following them up over time, the results of which are described elsewhere [32]. Given the 
aims of this analysis, the focus is restricted exclusively to participants in the phone group.
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Phone group participants were provided with a Sony Xperia E4 Dual SIM phone (Sony Corporation, To-
kyo, Japan), a protective case, and a SIM card allowing unlimited mobile data and in-network communi-
cation. The costs for these items and any required maintenance during the study period were covered by 
the research budget. Additional costs, such as those incurred by purchasing paid applications or making 
in-application purchases, were the responsibility of participants. Participants were asked to charge the 
phone daily, keep it on during the day, and maintain certain phone settings according to study specifica-
tions (eg, mobile data on, location settings set to “high accuracy”). We asked that participants carry the 
phone whenever seeking care. Otherwise, participants were encouraged to use the phone as if it were their 
own. Participants could use the secondary SIM slot for their own SIM card, though this action was not 
necessary for the phone to function. Field workers assisted with any participant queries regarding device 
use and study instructions when distributing the phones as well as at support visits conducted three and 
11-14 days after enrollment, respectively.

A baseline questionnaire conducted at enrollment collected participant and household sociodemographic 
information, care-seeking preferences and attitudes toward phone-specific elements of the study proto-
col. During the same visit, field workers recorded participant household location using a Garmin e-Trex 
GPS device. Participants were then visited monthly over six months and administered a questionnaire 
about recent childhood illness and any subsequent care-seeking. After completing this questionnaire, par-
ticipants with one or more health facility visits detected through the GPS approach were administered a 
supplementary questionnaire on these visits (see below). Field workers assessed participant compliance 
at each follow-up visit and provided support whenever required.

Participant mobility tracking and detection of health facility visits

Participant smartphones were pre-installed with TrackCare, an application developed for this study to re-
cord the phone’s location at one-minute intervals and transmit these data hourly to a central study serv-
er. Details of the application’s development and implementation are described elsewhere, including GPS 
data quality (mean observation time of 152 days [84% completeness], median accuracy of 12 m), and 
participant compliance with phone-specific protocols (79% overall) [33].

Participant GPS data were analyzed to detect potential health facility visits using a parameter-based 
geofencing approach. The approach defined a radius around each identified facility location, d

max
, with-

in which participant coordinates would be considered as within range of the specified facility. Sequential 
coordinates within range of the facility for longer than a minimum duration threshold, t

min
, were classi-

fied as a facility visit. Recognizing the potentially noisy nature of GPS data, we allowed coordinates to 
temporarily appear outside the range of a health facility for an interval, t

int
, provided that the coordinates 

subsequently reentered the facility range. Clusters of GPS data meeting these criteria were classified as 
potential health facility visits with the time associated with the earliest coordinate designated as the visit 
start time and the time associated with the last coordinate designated as the visit end time.

Optimal parameter values were determined through field-worker simulated health facility visits. A ran-
dom sample of 15 facilities was selected from those identified during the facility census. Two field work-
ers were each given one smartphone, preinstalled with TrackCare, and instructed to visit every location 
as if they were taking a child for care. These simulated visits lasted 10 minutes each. This time period was 
decided to be representative of the actual visit duration for most episodes of non-severe illness. All GPS 
data generated on the day of the simulation exercise were analyzed to detect health facility visits accord-
ing to 432 parameter combinations: d

max 
= each 5 m from 15-50 m, t

min 
= each minute from 0-5 minutes, 

and t
int

 = each minute from 2-10 minutes. Combination-specific results were compared to field workers’ 
known health facility visit status through two-by-two contingency tables with columns indicating true 
visit status and the rows indicating the combination-specific visit status. The optimal parameter combi-
nation was selected to maximize the area under the receiver operator characteristic curve (AUC), a com-
bined measurement of sensitivity and specificity. Ties among similarly performing parameter combina-
tions were decided in favor of the more conservative parameter values.

We applied the identified parameter combination to the prospective detection of health facility visits par-
ticipant within participant GPS data during study implementation. The day of each scheduled follow-up 
visit we analyzed the previous two weeks of participant GPS data to detect health facility visits. When 
one or more visits were detected, a list of detected visits was prepared and distributed to field workers. 
This list included the facility location, visit date, start time, and end time. If multiple visits were detected 
to the same location on a given day, one row was included on the list for each detected visit. Field work-
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ers reviewed these lists with participants at the end of each follow-up visit, asking participants to confirm 
whether each detected visit actually occurred and, if so, whether it was related to care-seeking for child-
hood illness. Participant responses were subsequently entered electronically into a list-specific Excel file 
(Microsoft Inc, Seattle, WA, USA).

Measures and statistical analysis

The overall performance of the GPS-based visit detection approach was assessed based on the proportion 
of all detected visits that were subsequently confirmed by participants during the prompted recall survey, 
regardless of visit purpose. Logistic regression models were applied to further explore the factors associ-
ated with the detection of false positive visits with each detected visit representing a single observation. 
Analysis was restricted to visits detected during participant follow-up periods with at least 50% GPS data 
completeness (ie, participants submitted GPS coordinates for at least 10 080 of the 20 160 total minutes 
during each follow-up period). Sensitivity analysis considered alternative data completeness thresholds 
(no threshold, >75%, >90%).

We explored the association between visit confirmation status and various aspects of health facility densi-
ty. This association was modeled according to kernel density estimation (KDE), a geospatial analysis tech-
nique for exploring the distribution of features (eg, health facilities) in space [34]. The approach overlays 
a cone-shaped probability density function on each point, the density of which decreases with distance 
from the center. The width of the kernel function depends on the user-defined bandwidth, which estab-
lishes the radius around the point within which the density function is contained. Where two density 
functions overlap (eg, due to multiple features located near one another), the density value in the over-
lapping section is the sum of the individual functions. Selecting the appropriate bandwidth is key, with 
excessively low or high values leading to under- or over-smoothing of the data, both of which interfere 
with the identification of trends within the data. We evaluated seven bandwidths ranging from 100m 
to 2500m, classifying the resulting maps into quintiles (zones) of facility density [35]. Visual inspection 
identified 500m as the optimal bandwidth (Figure 2), as this value eliminated the noise present at lower 
values while preserving the important regions lost to over-smoothing at higher values (Figures S1-S7 in 
the Online Supplementary Document). Of the 232.2 km2 included in the study area, Zone 1 accounts 
for 97% (224.7 km2), Zone 2 accounts for 2% (4.6 km2), Zone 3 accounts for 1% (1.7 km2), and Zones 
4 and 5 each account for less than 1% (0.8 and 0.5 km2, respectively).

Figure 2. Map of Vadu Health and Demographic Surveillance System study area with health facility density zones 
and inset maps displaying areas of high health facility density. Note: Kernel density estimation based on 500-m 
bandwidth. Zone 1 includes 97% (224.7 km2) of the study area, Zone 2 includes 2% (4.6 km2), Zone 3 includes 
1% (1.7 km2), and Zones 4 and 5 include less than 1% each (0.8 and 0.5 km2, respectively).
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Explanatory variables included characteristics of the detected visit, participant location characteristics, 
and sociodemographic characteristics of participants. Characteristics of the detected visit included dura-
tion, timing (overnight, other), proximity to participant residence and main highway, detected location 
sector (public, private) and type (hospital/clinic, other), location residence (urban, rural), and health fa-
cility density zone at detected location (Zone 1, other). Participant location characteristics included res-
idence (urban, rural), proximity to main highway, health facility density zone of residence, and average 
health facility density zone for GPS coordinates submitted during follow-up period. Participant sociode-
mographic characteristics included maternal age, education and employment status; previous household 
smartphone ownership; and household socioeconomic status (SES), defined according to the principal 
components analysis approach used by the Demographic and Health Survey [36].

Proximity to the main highway and health facility density zones at both the location and participant lev-
el were calculated using ArcGIS version 10.3 (Environmental Systems Research Institute, Redlands, CA, 
USA) [37]. Average participant health facility density zone was calculated by plotting all participant GPS 
coordinates submitted during each follow-up period, identifying the corresponding health facility den-
sity zone for each coordinate, and computing the average value for the period. While the health facility 
density zone linked with each participant residence is likely to be highly correlated with the average zone 
during the follow-up period, the latter measure should provide a more accurate measurement of the par-
ticipant’s exposure to areas of high and low health facility density.

We estimated the unadjusted and adjusted associations between individual predictors and visit confir-
mation status through bivariate and multivariable logistic regression models, respectively, with standard 
errors adjusted for clustering among observations from the same participant. All variables demonstrat-
ing a marginally significant association with visit confirmation status in bivariate analysis (P < 0.10) were 
considered for inclusion in the multivariable model. The final set of variables included in the model was 
guided by the Akaike’s information criterion and the Hosmer-Lemeshow goodness-of-fit test.

Ethical considerations

All participants provided written consent prior to group assignment. Before obtaining consent, field work-
ers informed participants that those assigned to the phone group would receive a smartphone and would 
be allowed to keep the device regardless of study completion. Various safeguards ensured the privacy of 
participant location data. Data stored on participant phones were saved in an encrypted database and 
were erased once they had been successfully transferred to a central study server. The study protocol was 
approved by the ethics committees of the University of Edinburgh and K.E.M. Hospital Research Centre, 
Pune (Study ID No. 1415).

RESULTS

We enrolled 200 mothers from June to September 2015. The baseline characteristics for mothers are pre-
sented in Table 1, stratified by health facility density zone of participant residence. One participant with-
drew from the study before completing the first follow-up visit and was excluded from analysis. Average 
participant age was 25.3 years (standard deviation (SD) = 3.3) with 10.9 completed years of schooling 
(SD = 2.7). Current employment was reported by 28% of participants and was highest among participants 
located in density zone 1. Previous smartphone ownership was reported by 69% of participants. Two 
thirds of households resided in one of the four urban villages located along the main highway, while the 
remaining third were distributed among the 18 rural villages. The proportion of households located in 
urban villages was lowest among participants in density zone 1 and increased by zone. Median distance 
from a participant’s residence to the main highway was 0.5 km (interquartile range (IQR) = 0.2-2.5) with 
a median of one health facility located within 500 m (IQR = 0-11). Participants in higher density zones 
were located nearer to the highway and had a greater number of health facilities nearby.

A total of 196 provider locations were identified, including seven public sector health facilities, 93 private 
hospitals and clinics, and 68 pharmacies. Facility premises were shared by 29 providers, resulting in 167 
unique provider locations (eg, private hospital on first floor with a pharmacy on ground floor). Baseline 
location characteristics stratified by density zone are presented in Table 2. Locations were most com-
monly in the private sector (81%) and either hospitals or clinics (59%), though this pattern was reversed 
among density zone 1 (94% public; 76% non-hospital/clinic) and was less pronounced in density zone 2 
(61% private; 52% hospital/clinic). Most facilities were located near the main highway (median distance 
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Table 1. Baseline participant characteristics by health facility density zone*

CharaCteristiC
total  

(N = 199), N (%)
ZoNe 1, 

N = 123), N (%)
ZoNe 2, 

(N = 29), N (%)
ZoNe 3, 

(N = 19), N (%)
ZoNe 4, 

(N = 20), N (%)
ZoNe = 5, 

(N = 8), N (%) P-value

Maternal age, mean (SD) 25.3 (3.3) 25.3 (3.3) 25.4 (3.4) 24.4 (3.9) 25.7 (2.7) 25.5 (2.3) 0.80

Maternal education (years), mean 

(SD)
10.9 (2.7) 10.9 (2.6) 10.5 (2.3) 11.2 (3.5) 10.6 (3.0) 11.9 (2.5) 0.71

Maternal employment 54 (28%) 43 (36%) 4 (14%) 3 (16%) 2 (10%) 2 (25%) 0.04

Wealth quintile:

1 (Lowest) 40 (20%) 18 (15%) 9 (31%) 6 (32%) 4 (20%) 3 (38%) 0.24

2 40 (20%) 23 (19%) 8 (28%) 4 (21%) 5 (25%) 0 (0%)

3 40 (20%) 22 (18%) 7 (24.1%) 5 (26.3%) 4 (20%) 2 (25%)

4 40 (20%) 30 (24%) 4 (13.8%) 1 (5.3%) 4 (20%) 1 (13%)

5 (Highest) 39 (20%) 30 (24%) 1 (3.4%) 3 (15.8%) 3 (15%) 2 (25%)

Previous smartphone ownership 132 (69%) 85 (71%) 13 (50%) 15 (79%) 13 (65%) 6 (75%) 0.21

Participant residence:

Rural 67 (34%) 61 (50%) 6 (21%) 0 (0%) 0 (0%) 0 (0%) <0.001

Urban 132 (66%) 62 (50%) 23 (79%) 19 (100%) 20 (100%) 8 (100%)

Distance to highway (km), median 
(IQR)

0.5 (0.2, 2.5) 1.6 (0.5, 3.1) 0.3 (0.2, 0.6) 0.2 (0.1, 0.3) 0.1 (0.0, 0.2) 0.1 (0.1, 0.2) <0.001

Facility locations within 500m, 
median (IQR)

1 (0, 11) 0 (0, 1) 7 (6, 13) 13 (7, 18) 18 (14, 24) 32 (26, 40) <0.001

SD – standard deviation, km – kilometer, IQR – interquartile range, m – meter
*Health facility density zones determined according to kernel density estimation using 500-m bandwidth.

Table 2. Baseline facility characteristics by health facility density zone

CharaCteristiC
total (N = 167), 

N (%)
ZoNe 1  

(N = 17), N (%)
ZoNe 2  

(N = 23), N (%)
ZoNe 3, 

(N = 36), N (%)
ZoNe 4  

(N = 34), N (%)
ZoNe = 5 

 (N = 67), N (%) P-value

Sector:

Public 31 (19%) 16 (94%) 9 (39%) 3 (12%) 0 (0%) 3 (4%) <0.001

Private 136 (81%) 1 (6%) 14 (61%) 23 (88%) 34 (100%) 64 (96%)

Type, general:

Hospital/clinic 99 (59%) 4 (24%) 12 (52%) 17 (65%) 23 (68%) 43 (64%) 0.021

Other* 68 (41%) 13 (76%) 11 (48%) 9 (35%) 11 (32%) 24 (36%)

Type, specific:†

Rural hospital 1 (<1%) 0 (0%) 1 (4%) 0 (0%) 0 (0%) 0 (0%) <0.001

Primary health centre 1 (<1%) 1 (6%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

Sub-centre/ANM 5 (3%) 3 (18%) 1 (4%) 1 (4%) 0 (0%) 0 (0%)

Anganwadi/ICDS centre 24 (14%) 12 (71%) 7 (30%) 2 (8%) 0 (0%) 3 (4%)

NGO/trust hospital/clinic 1 (<1%) 0 (0%) 1 (4%) 0 (0%) 0 (0%) 0 (0%)

Pvt. hospital 49 (29%) 0 (0%) 2 (9%) 10 (38%) 12 (35%) 25 (37%)

Pvt. doctor/clinic 42 (25%) 0 (0%) 7 (30%) 6 (23%) 11 (32%) 18 (27%)

Pharmacy/drugstore 40 (24%) 0 (0%) 1 (4%) 7 (27%) 11 (32%) 21 (31%)

Shop 4 (2%) 1 (6%) 3 (13%) 0 (0%) 0 (0%) 0 (0%)

Location: <0.001

Rural 34 (20%) 10 (59%) 19 (83%) 5 (19%) 0 (0%) 0 (0%)

Urban 133 (80%) 7 (41%) 4 (17%) 21 (81%) 34 (100%) 67 (100%)

Distance to highway (km), 
median (IQR)

0.1 (0.0, 0.3) 1.5 (0.9, 4.1) 2.7 (1.8, 3.8) 0.0 (0.0, 0.1) 0.0 (0.0, 0.1) 0.0 (0.0, 0.1) <0.001

Other locations within 500m, 
median (IQR)

17 (4, 25) 0 (0, 0) 2 (1, 3) 6 (5, 11) 17 (13, 18) 34 (25, 35) <0.001

NGO – non-govermental organisation, ANM – auxiliary nurse midwife, ICDS – Integrated Child Development Services, IQR – interquartile range
*Includes Anganwadi/ICDS centre, Pharmacy/drugstore, and Shop.
†In the case of 23 private hospitals and 5 private doctors/clinics, the same location coordinate was shared with a pharmacy/drugstore. The table pres-
ents the primary location type. For these shared location spaces, the primary type would be the private hospital or clinic.

0.1 km; IQR = 0.0-0.3) with facilities in zones 3-5 located nearer the highway than facilities in zones 1-2. 
A high degree of clustering of health facilities was observed overall with a median of 17 other facilities 
located within 500 m of each facility (IQR = 4-25). This was lowest in zone 1 (median 0, IQR = 0-0) and 
increased proportionally with density zone until zone 5 (median 34, IQR = 25-35).
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Two field workers simulated visits to a total of 15 health 
facilities while carrying smartphones installed with the 
TrackCare application. Location data generated during the 
simulation exercise were analyzed according to 432 com-
binations of distance, time, and interval parameters (Table 
S1 in the Online Supplementary Document). The op-
timal combination specified d

max 
= 25 m, t

min
 = 3 minutes, 

and t
int

 = 8 minutes. This combination correctly identified 
visits to 14 of the 15 simulated visits (Table 3). However, 
this combination incorrectly identified visits at four facil-
ities without a simulated visit from among the 117 eligi-
ble facilities not visited during the simulation. Sensitivity, 
specificity, AUC, negative predictive value, and accuracy 

all exceed 90%. Positive predictive value, the proportion of visits identified by the detection algorithm 
that actually occurred, is comparatively lower at 78%.

A summary of participant follow-up visits is presented in Table 4. Field workers completed 1098 fol-
low-up visits (8% loss to follow-up) with completion higher during earlier follow-up visits. Participant 
GPS data corresponding to each follow-up period were analyzed to detect health facility visits, identifying 
one or more visits during 793 follow-up visits (72%). Prompted recall surveys were completed during 694 
of these visits (88%), constituting the evaluable sample for the remaining analysis. The proportion of par-
ticipant follow-up visits where a prompted recall survey was indicated but was not completed increased 
during follow-up visits 5 and 6 due to server-related issues. While participant data were continually trans-
ferred to the central study server, a delay in relaying these data to the local study site resulted in field 
workers receiving the lists of GPS-detected visits after completion of the corresponding follow-up visits.

Table 3. GPS visit detection performance when applied to simulat-
ed facility visit data, optimal parameter combination (d

max
 = 25 m, 

t
min 

= 3 min, and t
int 

= 8 min)*

Field worker visit status

Facility 
visited

Facility not 
visited

Total

GPS visit 

detection 

status

Visit detected 14 4 18

Visit not detected 1 98 99

Total 15 102 117

GPS – global positioning system
*Sensitivity = 93%, Specificity = 96%, Area under receiver operating char-
acteristic curve = 95%, Positive predictive value = 78%, Negative predictive 
value = 99%, Accuracy = 96%.

Table 4. Participant follow-up visits completed, with GPS visits indicated, and with prompted recall completed

Follow-uP visits 
PlaNNed, N

(B) Follow-uP visits 
ComPleted, N (% oF a)

(C) Follow-uP visits 
with GPs visit 

iNdiCated N (% oF B)

(d) Follow-uP visits 
with PromPted reCall 

ComPleted, N (% oF C)

(e) summary data From Follow-uP visits with 
PromPted reCall ComPleted

Completeness 
of GPS data, 

Median (IQR)

GPS-detected 
visits per list, 
Median (IQR)

All visits 1,194 1098 (92%) 793 (72%) 694 (88%) 78% (60%-92%) 8 (3-27)

Visit 1 199 191 (96%) 150 (79%) 144 (96%) 80% (61%-92%) 8 (4-17)

Visit 2 199 191 (96%) 139 (73%) 138 (99%) 80% (56%-92%) 7 (3-27)

Visit 3 199 183 (92%) 136 (74%) 132 (97%) 78% (60%-91%) 8 (3-30)

Visit 4 199 180 (90%) 129 (72%) 113 (88%) 70% (55%-88%) 9 (4-22)

Visit 5 199 174 (87%) 114 (66%) 73 (64%) 78% (62%-94%) 12 (4-31)

Visit 6 199 179 (90%) 125 (70%) 94 (75%) 74% (59%-92%) 7 (3-26)

GPS – global positioning system, IQR – interquartile range

The visit detection algorithm identified a total of 22 251 possible health facilities visits across all study 
visits with participants confirming 440 (2%) of these visits as having occurred. The remaining visits rep-
resent false positives. Characteristics of each visit stratified by confirmation status are presented in Table 
5. Median visit duration was 13 minutes (IQR = 7-28) with no significant difference by confirmation sta-
tus. Visits occurring overnight accounted for 28% of all detected visits but only 12% of confirmed vis-
its (P < 0.001). The median distance between the facility at which each visit was detected and the corre-
sponding participant’s household was 0.1 km (IQR = 0.0-0.6). Confirmed visits tended to be further from 
the participants household than visits that were not confirmed (1.4 vs 0.1km, P < 0.001). Hospitals and 
clinics accounted for 59% of all detected visits with a larger proportion of confirmed visits occurring at 
hospitals and clinics than non-confirmed visits (76% vs 59%, P < 0.001). The performance of the visit de-
tection algorithm varied by provider type, with 79% of visits detected at the rural hospital confirmed (11 
visits) and both visits detected at the primary health center were confirmed. In contrast, none of the 854 
combined visits detected at any of the government sub-centers, the NGO hospital, or included shops were 
confirmed. Private sector facilities accounted for a greater proportion of confirmed visits than non-con-
firmed visits (95% vs 91%, P = 0.003). Detected visits were primarily at facilities located in urban villages 
with no significant difference by confirmation status.
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The results of the bivariate and multivariable logistic regression models are presented in Table 6. The fi-
nal model included the distance between the facility at which the visit was detected and the participant’s 
residence, the facility type (hospital/clinic, other), the density zone of the facility (zone 1, other), aver-
age participant density zone during follow-up, maternal employment status and follow-up visit number. 
False positives were more likely among visits detected nearby participant residences with the likelihood 
of detecting a false positive decreasing inversely with distance from a participant (odds ratio (OR) = 0.89, 
95% confidence interval (CI) = 0.82-0.97). Visits detected at facilities other than hospitals and clinics were 
more likely to be false positives (OR = 5.29, 95% CI = 1.65-4.67), as were visits detected at facilities located 
in the zone of lowest health facility density (OR = 5.29, 95% CI = 1.74-16.05). The likelihood of detecting 
false positives also increased as participants spent more time in areas of increased health facility density 
(OR = 2.29, 95% CI = 1.62-3.25). Maternal employment status was associated with detected visits being 
false positives (OR = 3.78; 95% CI = 1.79-7.97) as was follow-up visit number (OR = 1.19; 95% CI = 1.02-
1.39). The time of day when the visit was detected and the density zone within which participant house-
holds were located were significantly associated with confirmation status in bivariate analysis but were 
excluded from the final model due to collinearity with other predictors. In the case of household density 
zone, we compared models with household density zone and the average zone of participant GPS points 
during follow-up and found that the latter resulted in improved model fit.

Sensitivity analyses compared different cutoffs of GPS completeness and various specifications of the KDE 
bandwidth. Point estimates were consistent across all levels of GPS completeness, though confidence inter-
vals for some associations that were significant at more permissive levels of data inclusion became non-sig-
nificant as more data were excluded (Figure S8 in the Online Supplementary Document). Point estimates 
and confidence intervals for facility type, maternal employment, and visit number were consistent between 
varying specifications of the KDE bandwidth (Figure S9 in the Online Supplementary Document). Point 

Table 5. Characteristics of detected visits by confirmation status

CharaCteristiC
all deteCted visits 

(N = 22 251), N (%)
true Positives 

(N = 440), N (%)
False Positives 

(N = 21 811), N (%) P-value

Duration (minutes), median (IQR) 13 (7, 28) 13 (7, 31) 13.1 (7, 28) 0.49
Visit occurred overnight* 6159 (28%) 54 (12%) 6105 (28%) <0.001
Distance from participant residence (km), median (IQR) 0.1 (0.0, 0.6) 1.4 (0.4, 3.5) 0.1 (0.0, 0.5) <0.001
Distance from highway (km), median (IQR) 0.0 (0.0, 0.1) 0.0 (0.0, 0.1) 0.1 (0.0, 0.2) <0.001
Facility sector:
Public 2071 (9%) 23 (5%) 2048 (9%) 0.003
Private 20 180 (91%) 417 (95%) 19 763 (91%)
Facility type, general:
Hospital/clinic 13 206 (59%) 336 (76%) 12 870 (59%) <0.001
Other† 9045 (41%) 104 (24%) 8941 (41%)
Facility type, specific:
Rural hospital 14 (<1%) 11 (3%) 3 (<1%) <0.001
PHC 2 (<1%) 2 (<1%) 0 (0%)
Sub-centre/ANM 229 (1%) 0 (0%) 229 (1%)
Anganwadi/ICDS centre 1826 (8%) 10 (2%) 1816 (8%)
NGO or trust hospital/clinic 302 (1%) 0 (0%) 302 (1%)
Private hospital 6302 (28%) 277 (63%) 6025 (28%)
Private doctor/clinic 6357 (29%) 46 (10%) 6311 (29%)
Pharmacy/drugstore 6896 (31%) 94 (21%) 6802 (31%)
Shop 323 (1%) 0 (0%) 323 (1%)
Facility location:
Rural 2055 (9%) 41 (9%) 2014 (9%) 0.95
Urban 20 196 (91%) 399 (91%) 19 797 (91%)
Health facility density zone:
1 (Lowest density) 1605 (7%) 11 (3%) 1594 (7%) <0.001
2 1229 (6%) 44 (10%) 1185 (5%)
3 1968 (9%) 47 (11%) 1921 (9%)
4 5648 (25%) 51 (12%) 5597 (26%)
5 (Highest density) 11 801 (53%) 287 (65%) 11 514 (53%)

IQR – interquartile range, NGO – non-governmental organisation, PHC – primary health centre, ANM – auxiliary nurse midwife, 
ICDS – Integrated Child Development Services
*Visit began after 21:00 and ended before 07:00.
†Includes Anganwadi/ICDS centre, Pharmacy/drugstore, and Shop.
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estimates and confidence intervals for KDE-derived variables were highly sensitive to the bandwidth speci-
fication. The modeled effect size of each variable was attenuated as the bandwidth is increased.

DISCUSSION

This study developed and implemented a parameter-based geofencing approach to detect health facility 
visits from passively collected participant GPS data. While similar approaches set parameters based on a 
priori assumptions of their optimal value, this study benefited from a calibration exercise where param-
eter values were determined using locally simulated health facility visits. The results of this calibration 
were then applied to the prospective detection of health facility visits among a cohort of 199 mothers 
with young children over six months of follow-up. The overall performance of the GPS-based approach, 
measured as the proportion of all detected visits that were subsequently confirmed by participants during 
monthly prompted recall visits (440 confirmed of 22 251 detected), was low at 2%.

Researchers using algorithms to detect visited locations passively have struggled to balance detection of 
all true visits while minimizing the detection of false visits, though our results indicate lower performance 
than what has been reported elsewhere. Paz-Soldan et al. analyzed data collected from GPS trackers to de-
tect visits to a variety of location types in a Peruvian city, with 47% of visits to health facilities and 41% of 

Table 6. Unadjusted and adjusted associations with false positive health facility visit detection

CharaCteristiC uNadjusted or (95% Ci) adjusted or (95% Ci)
Characteristics of the detected visit:

Duration, minutes 1.00 (1.00-1.00) -

Visit occurred overnight* 3.32 (1.55-7.13)‡ -

Distance from participant residence, km 0.78 (0.71-0.85)‡ 0.89 (0.82-0.97)§

Distance from highway, km 1.09 (0.86-1.39) -

Location is private sector 0.58 (0.23-1.42) -

Location type:

Hospital/clinic REF REF

Other† 2.57 (1.44-4.57)‡ 2.78 (1.65-4.67)‡

Location in density zone 1 3.23 (1.06-9.85)§ 5.29 (1.74-16.05)‡

Location in urban village 1.01 (0.38-2.7) -

Participant location characteristics:

Urban village 2.74 (1.16-6.48) § -

Distance from highway, km 0.8 (0.64-0.99) § -

Zone of participant residence:

1 (lowest density) REF -

2 1.88 (0.82-4.33) -

3 8.83 (1.55-50.33)§ -

4 4.32 (1.29-14.47)§ -

5 (highest density) 11.04 (2.08-58.73)‡ -

Average zone during follow-up 2.04 (1.51-2.75)‡ 2.29 (1.62-3.25)‡

Participant sociodemographic characteristics:

Maternal age, years 1.03 (0.91-1.18) -

Maternal education, completed years 1.09 (0.92-1.3) -

Maternal employment 2.61 (0.89-7.69)‖ 3.78 (1.79-7.97)‡

Previous smartphone ownership 1 (0.36-2.81) -

Household wealth quintile:

1 (lowest) REF -

2 1.42 (0.4-5.04) -

3 0.72 (0.19-2.72) -

4 0.66 (0.18-2.47) -

5 (highest) 1.45 (0.32-6.64) -

Follow-up visit number 1.16 (0.97-1.38) 1.19 (1.02-1.39) §

OR – odds ratio, CI – confidence interval

*Visit began after 21:00 and ended before 07:00.

†Includes Anganwadi/ICDS centre, Pharmacy/drugstore, and Shop.

‡P < 0.01.

§P < 0.05.

‖P < 0.10; Note: confidence intervals adjusted for clustering among repeated observations from the same participant.
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visits overall subsequently in participant interviews [20]. Nguyen et al. developed a GPS-based approach 
to detect hospitalizations across the United States, with participants confirming 65% of all detected hos-
pitalizations [19]. In both cases, a more conservative approach was applied to the classification of visits 
than was performed in our study.

We applied three parameters to the detection of health facility visits: distance from the health facility 
(d

max 
= 25m), duration within that distance (t

min 
= 3mins), and interval during which points could temporar-

ily appear outside that distance and still be considered part of the visit (t
int 

= 8mins). In contrast, the com-
bination applied by Paz-Soldan et al. set d

max
 = 20m, t

min
 = 30mins, and t

int
 = 15mins [20]. The distance and 

duration threshold are more conservative than the values applied in our study, requiring that an individual 
be both nearer to a location and remain there over a longer period of time before being considered to have 
visited that location. Nguyen et al. specify an even higher duration threshold of 4 hours, though informa-
tion is not provided on other parameters [19]. Three quarters of visits detected in our study had a dura-
tion less than 30 minutes with no difference between visits by confirmation status, so it is unclear whether 
applying a higher duration parameter would result in improved performance.

While our selected parameter combination performed well when applied to field worker-simulated health 
facility visits (PPV = 78%), this combination resulted in a fifty-fold overestimation of health facility visits 
when applied to participant GPS data. This suggests a systematic difference between the simulation data set 
and participant data collected throughout the study duration. Field workers were directed to visit several 
facilities over one day of testing, typically traveling directly from one facility to the next without spending 
time on other activities in the area surrounding the health facility. Field worker mobility during the simu-
lation is therefore less likely to be representative of participants when moving through the study area. Con-
sequently, field workers were less likely to engage in activities that might be associated with the detection 
of false positives (eg, shopping at a location nearby a facility). The absence of such activities from the cali-
bration data set may have skewed the resulting parameter values. Also, the relatively short duration of each 
simulated visit (10 minutes) may have biased our duration value toward the value of three minutes, likely 
contributing to the high number of false positives detected. The combination of these factors may explain 
in part why the parameter combination performed well within the simulation exercise but poorly when 
applied to participant data. Future calibration efforts should include a broader range of simulated activities 
and make additional efforts to ensure that simulated data are representative of the participant behaviors 
under study. One recommendation for such an activity would be to enroll a small sample of participants, 
provide them with GPS-enabled smartphones, and ask that they also document their travel behavior (eg, 
through a travel diary). Such information could be used to train the detection algorithm to more accurate-
ly classify participant GPS data within the specific context of the study area.

Our analysis of confirmed visits provides valuable insight into the importance of study context. We iden-
tified five zones of health facility density with the zone of highest density including 40% of all identified 
health facilities. This zone included two regions with a combined area of 0.5 km2. Participants living in this 
zone represented only 4% of the study population yet accounted for 30% of all detected visits. Participant 
location was significantly associated with visit confirmation status for all measures examined in the unad-
justed analysis. Visits were more likely to be false positives among participants residing in urban villages, 
nearer to the highway, and in areas of greater health facility density, measured either according to house-
hold location or the zone where participants spent time. The last of these covariates was highly associated 
with visit confirmation status in the adjusted model. In this case, the likelihood that a detected visit was a 
false positive more than doubled with each one unit increase in the average zone where a participant spent 
her time. As a participant’s exposure to highly urbanized areas with a high health facility density increases 
so too does the probability that she will pass within range of a health facility long enough for her data to 
indicate a visit to the facility. This complicates the implementation of a GPS-based approach for detecting 
visits to health facilities and other locations of interest in urban areas.

We also noted a significant association between health facility type and confirmation status. Visits detect-
ed at facilities other than hospitals and clinics were nearly three times as likely to be false positives than 
were visits at hospitals and clinics. Private sector facilities account for nearly all hospitals and clinics, while 
private pharmacies account for most other facility types. Within our study context, private hospitals and 
clinics are often located in similar areas. The nearly 3-fold reduction in performance among non-hospi-
tals and clinics is therefore likely due to characteristics beyond facility location. Separately, we noted high 
performance at the government-run rural hospital (79%) and the primary health centre (100%), though 
only 16 visits were detected between the two. Both facilities are offset from the main road and are located 
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in areas of lower density. While these limited numbers should be interpreted with caution, they suggest 
certain contexts where a similar approach may perform well.

The study had several limitations. First, our study used a prompted recall survey to evaluate the perfor-
mance of our visit detection algorithm. While this is a common approach for assessing the validity of GPS-
based inferences, it involves a component of participant recall and may be subject to the same biases as 
survey-based methods [38]. Stopher et al. evaluated prompted recall within the context of a transporta-
tion study to identify travel mode and trip purpose, finding that prompted recall misclassified trip mode 
and trip purpose in about 10% and 20% of records, respectively [38]. The authors propose that wearable 
cameras may provide an alternative to prompted recall, though such an approach would not be feasible in 
our study for several reasons. Second, while our prompted recall approach allowed for the classification 
of detected health facility visits as true positives and false positives, it did not include any evaluation of in-
stances where the GPS method identified no visit. This would have required the inclusion of an additional 
section where participants were asked to list any visits that occurred but were not among the GPS-detect-
ed visits. The inclusion of such a section was considered during study design but omitted due to concerns 
that this would further prime participants to monitor their care-seeking behavior and unnecessarily bias the 
results of the parent study validating maternal care-seeking recall. Without confirmation of true negatives, 
the calculation of standard diagnostic metrics was not possible (eg, sensitivity and specificity). Third, visit 
confirmation status was only collected for those visits detected according to the specified parameter combi-
nation, complicating the consideration of alternative parameter definitions after the fact. More conservative 
parameter values may result in fewer visits detected but evaluating its performance would only be possible 
where detected visits were a subset of those for which prompted recall data are available. Fourth, study im-
plementation revealed instances where an improbably large number of visits were detected during specific 
participant follow-up periods (eg, >25 visits detected in previous two weeks). These lists were reviewed 
with participants according to the same protocol as all other lists, though their length may have resulted in 
non-standard completion of the prompted recall survey and potential outcome misclassification due either 
to participant fatigue or field worker improvisations. Given our aim of exploring the performance of our 
visit detection algorithm, we have retained all visits in our analysis. The association of many factors with 
these large lists were also of interest in our analysis (eg, proximity between participant residence and health 
facility) and their exclusion would have biased our results. Finally, we assumed that GPS data collected from 
participant smartphones were a valid measurement of participant movement throughout the study period. 
This assumption held as long as the phone traveled with the participant but was violated when the par-
ticipant traveled without the phone or when the phone was given to someone other than the participant. 
This is a common challenge faced by studies using GPS and other remote tracking technologies. However, 
a recent study found the magnitude of misclassification resulting from participant non-compliance to be 
relatively low [39]. If a non-participant visited a health facility when carrying the phone, it is unlikely that 
any resulting GPS-based visit would be confirmed by the participant during prompted recall. While such 
instances would be rare, these would lower the calculated performance of the approach.

This study demonstrates the development and implementation of a GPS-based approach to detect health 
facility visits. Such approaches rely on externally defined parameter values, the selection of which is of 
critical importance. Differences in study settings provide no guarantee that the parameter combination ap-
plied in one setting will perform similarly in another. Future studies should consider the process by which 
these parameters are set. There may also be interest in exploring how machine learning and other statisti-
cal techniques can be applied to refine a visit detection algorithm during study implementation. This study 
has also demonstrated the challenges associated with detecting health facility visits in areas of high density. 
Such an approach may perform much better in a more rural setting with fewer health facilities and where 
they are located further from urban centers. While we provided participants with smartphones, several 
studies have collected GPS data using participants’ own smartphones [40,41]. As the discriminative capac-
ity of visit detection algorithms increases, combining such an approach with data generated from partici-
pant-owned devices and publicly available spatial data could greatly expand the scale of current research 
into health-related mobility at relatively low cost.

CONCLUSION
While many studies have explored the capacity for GPS-based visit detection, few studies calibrate param-
eter values according to locally generated data sets. This study demonstrates one process by which local-
ly simulated health facility visits informed the selection of potential parameter values, though uncertainty 
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