Online supplementary document (Provided by authors)

Table w1. The CHNRI methodology for setting priorities in health research investments.

STAGE 1: Defining the context and criteria for priority setting

Specifying the context a priori is a critical part of the CHNRI process, because priority scores for many research investment options may change substantially according to different contexts. The context for this exercise was defined to address research investment priorities that could assist in achieving UN's MDG4. This is a goal on which global consensus has been reached and wide political commitment has been made.

The context was specified by the WHO Child and Adolescent Health as follows:

- Burden of disease of interest: deaths from preterm birth and low birth weight (PB/LBW);
- Population of interest: children under 5 years of age in all developing countries, where nearly all cases of PB/LBW deaths occur;
- Existing policy/target: reduction of PB/LBW mortality by two thirds by 2015 (in order to contribute to the achievement of the UN's MDG4)
- Level of urgency: high (because the goal is not being achieved)
- Time frame: to achieve detectable improvement in the rate of PB/LBW mortality reduction by 2015 or soon thereafter;

STAGE 2: Choice of technical experts, systematic listing and scoring of research investment options

The co-ordinators of the project for WHO Child and Adolescent Health (RB and JM) invited a group of 21 international technical experts with interest in PB/LBW research to participate in the CHNRI process. The selection of experts was based primarily on their track record of conducting research of high quality for many years on the topic of PB/LBW in low and middle income countries. Every effort was made to invite a mix of people with different backgrounds (clinicians, epidemiologists, public health experts, program leaders and basic scientists) and from different countries (both developed and developing ones), so that the mix contains a diversity of views from the wider research community. Every expert scored only 2 criteria of his greatest expertise, which led to each research question being assessed independently by 16 different experts who accepted participation in the scoring. This limited the potential impact of any single expert on overall research priority scores.

The first task of the technical experts was to propose a large spectrum of research questions in a systematic way, according to the CHNRI framework for listing research questions (**Table w2**). The conceptual framework for this process was described in detail elsewhere [7,8]. The co-ordinators from WHO collected all the proposed ideas from each of the experts independently by e-mail. The process was open-ended and it initially yielded 82 research questions from 21 experts. Then the list of research questions was consolidated and worded to make the new knowledge, that was proposed to be generated, apparent to all the scorers. In producing this list, the co-ordinators limited the overlap between proposed ideas and ensured that the research questions were phrased in a way that would make the CHNRI scoring process applicable to each research question. We feel that the final list of 82 questions covers the wide spectrum of all possible questions.

The second task of the experts was to score all research questions independently, according to the five agreed criteria. For each of the 82 research questions and each criterion, each of the 16 experts who agreed to take part in this step answered three questions targeted to assess the likelihood of the proposed research to comply with the priority-setting criterion (see **Table 2**). This task was completed by all 16 participating experts, each one choosing 2 criteria closest to his/her expertise. The entire process was conducted and completed via e-mail between October 2007 and June 2008. Further information on

methods related to this part of the priority-setting process were presented elsewhere in greater details [7,8].

STAGE 3: Community involvement - input from larger group of stakeholders

CHNRI methodology ensures community involvement through incorporating the opinions and values from a broader group of stakeholders (e.g. expected recipients of the research, taxpayers who fund health research, health workers, journalists and media, experts in ethics, law, political science, etc.) [16]. Stakeholders lack expertise to directly decide research priorities, but their opinions and values can still be incorporated by weighing the chosen priority-setting criteria according to their perceived importance. In three separate exercises that took place between March and June 2006, CHNRI consultants interviewed three different groups of stakeholders [16]. We decided to use weights provided by the group of stakeholders most appropriate to this exercise (members of an international priority setting network co-ordinated from the University of Toronto) to compute the overall priority score for each of the 82 research options. More detailed explanations on the rationale and methods for including stakeholders' opinions in the process are presented elsewhere [16].

STAGE 4: Computation of "research priority scores"

All the experts answered the questions listed in **Table 1** by 'Yes' (1 point) or 'No' (0 points). They were also allowed to declare an informed but undecided answer (0.5 points) or declare themselves insufficiently informed to answer the question (missing input). Thus, the proposed research questions got a score for each of the five criteria as "the proportion of maximum possible points scored when an answer was given" (i.e., excluding the missing input). They represent a direct measure of collective optimism of the scorers. Each of the 82 listed research questions received five intermediate scores (each ranging between 0-100%), which were then multiplied by 100 and weighted according to the input from the stakeholders. The weights were applied as follows: a weight of 1.75 was given to the criterion "maximum potential for disease burden reduction"; 0.96 to "answerability in an ethical way"; 0.91 to "predicted effect on equity in the population"; 0.89 to "deliverability, affordability and sustainability"; and 0.86 to the criterion "potential contribution to effectiveness" [8,16]. The overall research priority score (RPS) was then computed as the weighted mean of all five intermediate priority scores. The exact scores given to all 82 research questions from individual experts are presented in **supplementary Table w2**. The final list of priorities with intermediate and final priority scores for all 82 proposed research questions is presented in **supplementary Table w3**.

Assessment of agreement between scorers

CHNRI methodology has the ability to expose the issues of the greatest agreement and controversy. This allows more focused discussion among experts following this exercise, and informs the investors and policy makers about the amount of controversy that surrounds each research question. The datasets that CHNRI methodology produces are not appropriate for application of the usual Kappa agreement statistics, which has been discussed in detail elsewhere [8].

For each evaluated research investment option, average expert agreement (AEA) is informing us, for an average question, what proportion of scorers gave the same most frequent answer. This parameter satisfactorily accounts for missing answers, is unaffected by responses of 'undecided', and is also unaffected by the varying number of scorers per criterion and differences in scorer composition for the different criteria. In AEA computation, all 4 possible responses ("Yes", "No", "Neither" and "Don't know") are treated as a valid response. Therefore, missing values ("Don't know") are also treated as a possible response. If the substantial proportion of the experts say that they "Don't know" the answer, AEA will reflect this and reduce the level of overall agreement, rather than increase it.

Advantages and limitations of the CHNRI methodology

The applied CHNRI methodology proved to be helpful to systematically list and score a very large number of specific research questions, as shown recently in exercises conducted at national level in South Africa, and at global level for mental health research issues, zinc deficiency, childhood pneumonia, childhood diarrhoea, neonatal infections, primary health care, disability groups, etc. (see http://www.chnri.org/publications.php). Other advantages of the CHNRI process include its systematic nature, transparency, well defined (a priori) context and criteria chosen for discriminating between research investment options, a highly structured way in which relevant information is obtained from the scorers, independent scoring that limits influence of strong-minded individuals on the rest of the scorers, its informative and intuitive quantitative outputs and ability to expose points of greatest agreement and controversy.

Still, the methodology is not free of several possible biases. Although the advantages mentioned above represent a serious attempt to deal with many issues inherent to a highly complex process of research investment priority setting, there are still concerns over the validity of the CHNRI approach and related biases. One of them is related to the fact many possible good ideas ("research investment options") may not have been included in the initial list of research options that was scored by the experts, and to the potential bias towards items that get the greatest press. The spectrum of research investment options listed initially in this exercise was derived through a systematic process, but it is not endless and it cannot ever cover every single research idea. Specific research methodologies (i.e. randomized clinical trials, etc.) are not mentioned because the research questions listed in that exercise are unlikely to be answered by a single well-defined study. Therefore, the CHNRI process aims to achieve reasonable coverage of the spectrum of possible ideas. After the completion of the exercise, approximate scores and ranks for some specific research questions that are missing in the initial systematic list could still be estimated – either by relating them to the most similar questions on the list or by having those missed questions scored by a single expert (or by a group), using the CHNRI framework and then comparing the computed score to all other scores received for the originally listed research options.

Another concern over the CHNRI process is that its end product represents a possibly biased opinion of a very limited group of involved people. In theory, a chosen group of experts can have biased views in comparison to any other potential groups of experts. However, the number of people globally who possess enough experience, expertise and knowledge on the topic (in this case, PB/LBW) to be able to judge a very diverse spectrum of research questions is rather limited (although certainly much larger than the group that we eventually selected). If one thinks of this "global pool of technical experts" as the whole population that could theoretically be used to solicit expert opinion on the questions that need to be asked, we then selected a "sample" from that population, based on their track record in research on PB/LBW. Given that the "sample" of the experts chosen for this exercise was one of the largest and the most diverse to conduct a CHNRI exercise to date, while the number of experts in this neglected health problem globally is not large, we doubt that there would be considerable differences in the composition of the initial list of questions (or results of the scoring process) if some other group of experts had been selected.

Obviously, CHNRI methodology is not free of bias that results from the choice of the experts, and different groups of experts may indeed have quite different opinions. However, the larger and more diverse the group of chosen experts, the less likely is that the results of their scoring would significantly deviate from the output of any other large and diverse expert group, chosen from a limited "pool of global technical experts on PB/LBW".

Validation of CHNRI methodology

CHNRI methodology combines two ideas:

(i) "Principal component analysis" - a statistical technique which reduces a very complex system of large number of variables to a small number of relatively independent "principal components" which still capture a sizeable proportion of variation in the system. By defining a set of 5 "criteria", CHNRI process effectively reduces a notoriously complex and multi-dimensional task of priority setting, which

could be approached through an almost infinite number of "lenses", into an exercise where the 5 most important (and reasonably independent) criteria for priority setting are clearly defined. They can even be weighted afterwards, in order of their importance to the users.

(ii) "Wisdom of the crowds" – this refers to the process of taking into account the collective opinion of a group of individuals rather than a single expert (or small number of experts) to answer a question, because it has been shown that the average of collective guesses are nearly always closer to the truth than any expert judgement. The pre-requisites for this process to work are: (i) Diversity of opinion (each person should have private information even if it's just an eccentric interpretation of the known facts); (ii) Independence (people's opinions aren't determined by the opinions of those around them); (iii) Decentralization (people are able to specialize and draw on local knowledge); and (iv) Aggregation (some mechanism exists for turning private judgments into a collective decision – in this case, the CHNRI method).

The validation of CHNRI method based on the exercises conducted to date showed: (i) extraordinary stability (correlation coefficients of over 90%) of scores given to same questions by the same experts in different points in time; (ii) almost identical scores of the same question scored by a larger group multiple times (score always falls within +1.7 points on a scale 0-100); and (iii) Monte Carlo simulations in random sub-samples of the larger group of scorers showed that the probability that the outcomes of the exercise could be substantially different if another group of experts conducted the scoring becomes incredibly small as soon as each criterion is scored by more than 17-23 rational persons with some knowledge of the problem; (iv) change of the context of the exercise leads the same group of experts to assign significantly different scores to the same research questions (Rudan I et al., personal communication).

In this paper, we used 16 technical experts to score each criterion. Thus, given the well-defined context for this CHNRI exercise and a set of simple YES/NO questions, it is entirely improbable that any other group of rational individuals with some knowledge of the problem, regardless of their background or selection, would ever reach dramatically different conclusions than our group did.

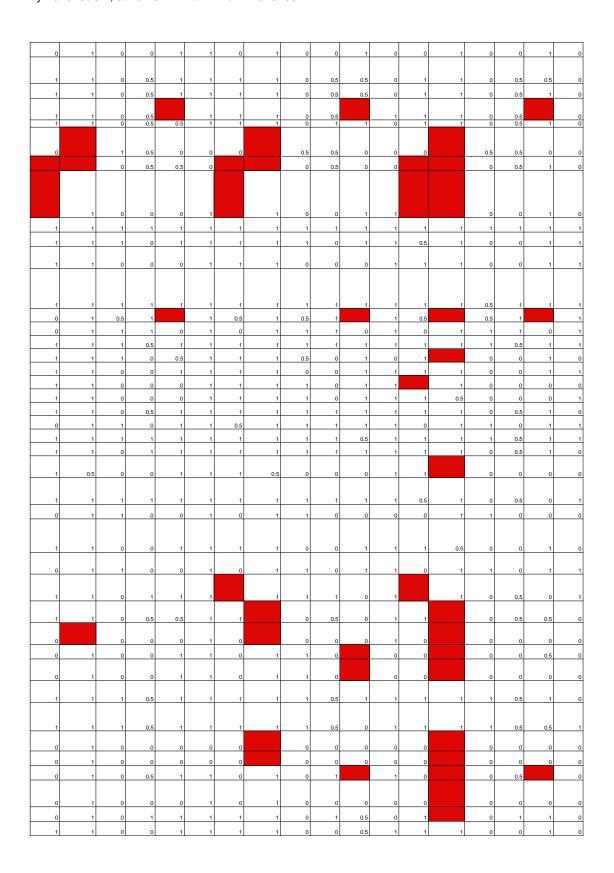
Although this may seem counter-intuitive to some critics, this is the basic property of the "wisdom of crowds" phenomenon (for more details please see an excellent book by James Surowiecki: The Wisdom of Crowds: Why the Many Are Smarter Than the Few and How Collective Wisdom Shapes Business, Economies, Societies and Nations), which CHNRI uses as its fundamental principle. Once that each individual gets a right to express judgement that is treated equally as the judgement of any other individual, then the personal biases that those individuals bring into the process tend to cancel and dilute each other regardless who the participants are. What is left is the information based on accumulated knowledge, lifetime experience and common sense of those who took part – which is the result of the CHNRI process.

In comparison to other methods for setting priorities, in "expert panel"-type processes one very loud vote has a potential to heavily bias the process, resulting in shameful inequity and snowballing support for some issues at the expense of the others, a situation which we are observing today. We recently conducted Delphi and CHNRI exercises in parallel to compare them. This happened during the large GAPPS meeting ("Global action plan for prematurity and stillbirth") sponsored by The Gates Foundation. Nine working groups were defining priorities using Delphi-type process, while three working groups were using CHNRI method. At the end of the conference, the rapporteurs from Delphi groups realized that it is simply not possible to have a discussion on all possible research options and keep in mind all their pros and cons all the time. Eventually, the group leaders ended up forwarding the ideas that they originally brought to the table and gained support for them from the rest of the group. In CHNRI groups, however, a process highlighted pros and cons of many competing ideas. More importantly, after the scoring was conducted, the top priorities were often surprising to the group - because they were frequently the issues which have not been discussed at all, and no-one had expertise in them.

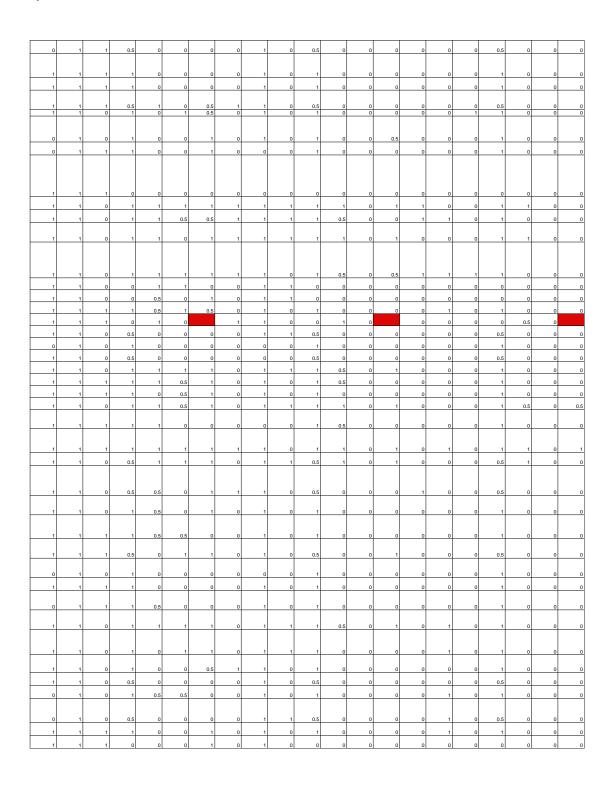
Table w2. Scores assigned to research ideas by the participants in the exercise.

RESEARCH	W 4. DCC	RESEARCH OPTION	RESEARCH IDEAS BY THE PARTIE	RESEARCH
INSTRUMENT	AVENUE	RESEARCH OF HOR	RESEARCH QUESTION	QUESTION #
Basic epidemiologic al research	Measuring the burden of LBW	Incidence of LBW and relative contribution of prematurity and growth retardation	Sentinel sites for population-based ascertainment of all live and stillbirths, and their birth weights and gestational ages (from 24 weeks gestation) in various regions.	
		Contribution of LBW to neonatal mortality	Population-based estimates of the contribution of LBW (overall, preterm, and SGA) to neonatal mortality as primary or contributory	1
			cause at global and regional levels Population studies to determine mortality associated with preterm birth at gestations 24–28 weeks, 28-32 weeks and 32-36 weeks using verbal autopsy, and the time of death (first day, first week, first morth, post-neonatal period)	2
			Develop mathematical models for assessing relative contribution of LBW amongst multiple and competing causes of death	3
	Understandin g risk factors	Contribution of maternal factors (other than infection and nutrition) to causation	Contribution of adolescent pregnancy and short birth intervals to causation of preterm birth and intrauterine growth restriction	4
		of LBW	Determine the degree to which second-hand smoke contributes to LBW among non-smoking women	6
		Influence of maternal	Contribution of psychosocial and physical stress (manual labour) to preterm birth and intrauterine growth retardation Incidence of intrauterine infection (chorioamnionitis) in resource	7
		infections on incidence of preterm birth	poor communities and its influence on preterm birth Incidence of bacterial vaginosis in resource poor communities and	8
			its influence on preterm birth Incidence of chronic gingivitis or other chronic infective processes	9
		Influence of maternal nutritional status on	in the mother on preterm birth Relationships between maternal height, weight (BMI) and birthweight in populations subject to nutritional stunting	
		incidence of LBW	Prevalence of hypovitaminosis D in pregnancy and its contribution	11
			to LBW at term Identify risk factors for "eating down" in areas where gestational weight gain is low	12
	Functional outcomes in LBW infants	Relationship of early growth in LBW infants with functional outcomes during infancy, childhood and	weight gain is low. Correlation of early growth rate (linear and ponderal) with infant mortality risk and neurological outcome in preterm infants fed breastmilk	
		adult life	Identification of minimum weight gain cutoff for intervention in	14
			breastmilk fed preterm infants Identification of minimum weight gain cutoff for intervention in breast milk fed SGA infants	15 16
			Contribution of preterm birth and intrauterine growth retardation to stunting in childhood (increased risk of LBW in next generation of girls subjected to stunting)	17
		Determinants of functional outcomes in LBW infants	Relationship of the home environment and neurocognitive development of LBW infants Relationship of sleeping arrangements and infections with SIDS in	18
			LBW infants Prevalence of zinc deficiency in preterm infants (particularly those	19
			of <32 weeks gestation) fed on unsupplemented breastmilk Relationship between late anaemia and infant mortality	20 21
Health Policy and Systems Research	Improved delivery of existing interventions for care of	Early identification and selection of LBW infants for provision of additional care	Risk factors for lactational failure in LBW infants Approaches to increase the proportion of LBW infants who receive additional care before discharge among those born in a hospital	22
	LBW infants		Idenfication of LBW infants within 24-48 hours of birth for additional care among among those born at home	23
			Identification and differentiation of prematurity and term growth retardation by paramedical personnel using simple	
		Improved care of LBW infants at home	methods Identification of current behaviours, and barriers and supports for optimal home care practices, including care	25
			seeking for illness Perceptions and attitudes of families and communities, including TBAs, to viability of preterm, LBW infants	26 27
			Identification of optimal timing and content of home visits and potential workers to do the home visits	28
			Effect of peer-supported home care interventions on survival of preterm infants of >32 weeks gestation Compare the effectiveness of facility, family and community	29
			based health education programmes for improve preventive practices Test the effectiveness of interventions to increase	30
		Improved care of LBW	awareness about frequency of breastfeeding, and test interventions that enable women to feed frequently Improved criteria for identifying LBW infants who need to be	31
		infants in health facilities	cared for in a hospital Approaches to improve quality of care of LBW infants in health facilities	32
			Attitudes of health providers to viability of preterm, LBW infants	34
			Approaches to improve access to care for the subset of LBW infants who need hospital care Prevalence and timing of hypoglycaemia in preterm and	35
	Improved	Delivery of a package of	growth restricted LBW infants and approaches to prevent it Effect of a package of interventions (including delaying first	36
	delivery of existing interventions for prevention of LBW	interventions along the continuum of care for prevention of LBW	pregnancy, birth spacing, anti-malarial therapy, prophylactic antibiotics for high risk women, dietary interventions and micronutrients on the incidence of preterm birth and growth retardation	37
	5. 23.,	Delivery of interventions during pregnancy for prevention of LBW	Approaches to improve access to quality antenatal care including interventions to prevent LBW (e.g. IPT, syphilis	
		prevention of FDAA	treatment) Approaches to improve utilization of effective ANC (at least 4 visits)	38
			Determine the degree to which the burden of LBW could be ameliorated by appropriate nutritional interventions (e.g. food or micronutrient supplementation) administered during	
			pregnancy Evaluate the possibility of changing existing government food supplementation programmes to adopt the use of foods that meet demonstrated needs of the pregnant	40
			women who will be served by these interventions	41

			Approaches to reduce smoking in fathers of unborn chidren	
		Delivery of interventions to	during pregnancy Approaches to improve access to Adolescent Reproductive	42
		adolescents and women of reproductive age for prevention of LBW	and Sexual Health (ARSH), Family Planning and STI services	43
		prevention of LBW	Approaches to improve utilization of ARSH, Family Planning and STI services	44
			Approaches to reduce smoking and alcohol exposure in adolescents and young women, particularly in transitional	
			countries Approaches for the prevention of adolescent pregnancy	45 46
			Determine the degree to which the burden of LBW could be ameliorated by appropriate nutritional interventions (e.g. food or micronutrient supplementation) administered before	40
			pregnancy Evaluate social constraints to the acceptance and use of	47
	Improved	Delivery of antepartum and	current interventions Effectiveness of counselling during pregnancy for prevention,	48
	delivery of existing interventions to improve outcome for LBW infants	intrapartum interventions to improve outcome for LBW infants		49
	LDW IIIIailis		Approaches to increase the use of antenatal corticosteriods in preterm labour in resource-poor settings	50
			Approaches to increase the use of antibiotics for premature	
			prolonged rupture of membranes in resource-poor settings Estimation of the contribution of inadequate resuscitation of	51
			preterm infants to their mortality and effectiveness of interventions to improve resuscitation	52
Research on	Improving	Improved feeding of LBW	Effective interventions for achieving early initiation of breastfeeding	- OL
mproving existing nterventions	existing interventions interventions for care of LBW infants	infants	including feeding mode and techniques for those unable to suckle directly from the breast	53
	LDVV IIIIailis		Identification and evaluation of AFASS replacement feeding	
			options for preterm infants of HIV positive mothers Compare the safety and effectiveness of cup and gavage feeding in preterm infants	54 55
			Effectiveness of micronutrient supplementation (e.g. zinc, vitamin D, iron) in improving linear growth and survival of LBW infants	56
			Safety and efficacy of high volume breastmilk feeding for preterm and low birth weight infants	57
			Optimal timing of complementary feeding for preterm infants, particularly those of 28-32 weeks of gestation	58
		Improved growth monitoring	Development of simple, precise methods for measuring linear growth of preterm infants	59
		monitoring	Development of risk-based growth reference for preterm and SGA infants	60
		Improved thermal care	Comparison of KMC and alternative methods of keeping the LBW	
			infant warm in community settings Effectiveness of plastic bags to maintain temperature of unstable	61
		Improved skin and cord	preterm infants Effectiveness of improved skin care (e.g. sunflower oil massage)	62
		care	Effectiveness of improved cord care (e.g. chlorhexidine	63
		Improved "birth"	application) Efficacy of routine "birth" vaccines given at different	64
		vaccination	postconceptional ages and weights in preterm and growth retarded LBW infants	65
		Improved treatment of infections and complications of preterm birth	Identify which infections in LBW infants can be treated with oral antibiotics and which ones require intrmuscular or intravenous antibiotics	66
			Early non-invasive continuous positive airways pressure for	
	Improving existing interventions for prevention	Interventions during pregnancy for prevention of LBW	preterm infants with respiratory distress Determine the minimum effective maternal corticosteroid exposure in preterm labour	67
	of LBW		Relative efficacy of delayed and early cord clamping for preterm and SGA infants on functional consequences like	68
Research for	New	Improved feeding of LBW	anaemia, respiratory problems and jaundice Identifying micronutrients whose supplementation improves	69
development of new nterventions	interventions for care of LBW infants	infants	functional outcomes including survival in distinct subgroups of preterm and growth retarded infants	70
			Development and evaluation of nterventions to improve the quality (energy and micronutrient density) of complementary foods after 6 months of age in LBW infants Development of methods for harmonising the composition of	71
			expressed breastmilk to infant requirements without constraining output	72
			Development of safe and effective pharmacological methods of stimulating breastmilk supply	73
			Development of safe and effective protein "fortifiers" to	10
		Improved thermal care of	promote early neonatal growth in preterm infants of <32 weeks gestation in resource poor settings Development of new simple and effective interventions for	74
		LBW infants	providing thermal care to LBW infants, if KMC is not acceptable to the mother	75
		Improved skin and cord care of LBW infants	Development of new simple and effective interventions that prevent infections and improve survival (e.g. new emollients for massage)	
		Interventions to reduce complications of preterm	Development of interventions for activating endogenous surfactant production through gene switching	76
		birth	Development of interventions for activation of HbA	77
			synthesis to ameliorate early anaemia in preterm babies Evaluation of the role of probiotics in preventing sepsis in	78
	New interventions	Interventions during	LBW infants Develop maternal biochemical indicators predicting low birth	79
i	for preventions	pregnancy for prevention of LBW	weight	
	of LBW	LDVV		80
		LBW	Development of safer and more effective tocolytic therapy that can be provided orally	80 81


Q.1.1. W	Vould yo and ha	u say the ro	esearch q ned endp	question oints?	is clear	propos	of the gap t sed endpoi sed to ansv	rom curre ints; would ver the res	level of res oposed res ont level of d you say t search que oints of the	knowledg that a stud stion and	e to the ly can be to reach	Q.1.3. propose	d research	ink that a s question thout majo	would obt	ded to answ ain ethical is?	er the approval
Victora	Rasmus.	Tomlinson	Singhal	Biloglay	Rudan	Victora	Rasmus.	Tomlinson	Singhal	Biloglav	Rudan	Victora	Rasmus.	Tomlinson	Singhal	Biloglav	Rudan
1	1	1	1	1	1	0.5	1	1	1	1	1	1	1	1	1	1	1
1	1	0.5	0	0.5	0.5	0.5	1	1	1	1	1	1	1	1	1	1	1
		0.0		0.0	0.0	0.0			·				·				
1	1	0.5	1	0.5	0.5	0.5	1	1	1	0.5	0.5	1	1	1	1	1	1
1	1	1	1	0	0	1	0.5		1	0.5	0.5	1	1	1	1	1	1
1	1	0	1	0.5	1	0.5	1	1	1	1	1	1	1	1	1	1	1
0.5	1			0	0		0.5	1	0	0.5	0.5	1	1	1	1	1	1
0.5	1	0.5	0	0	0	0.5	1	1	0	0.5	0.5	1	1	1	1	1	0.5
0.5	1		0	0.5	0.5		1	1	0	0.5	0.5	1	1	1	1	0.5	1
0.5	1			0	0.5		0.5	1	0.5	0.5	0	1			1		0.5
					0										<u>'</u>		
1	1	1	0	0.5	0.5	0.5	0.5	1	0	1	1	1	1	1	1	1	1
0.5	1			0.5	0.5		0.5	1	0	0.5	0.5	1			0		1
0.5	1	1	1	1	1	0.5	1	1	1	1	1	1	1	1	1	1	0.5
1	1			1	1	0.5	1	1	0	1	1	1			1	1	1
1	1	0	0	1	1	0.5	1	0.5	0	1	1	1	1	1	1	1	1
1	1	1	1	0.5	1	0.5	1	1	1	0.5	0.5	1			1	0.5	1
0.5	0.5	0.5		0.5	0.5		0.5	0.5	0	0.5	0.5	1	1		1	0.5	0.5
1	1	1	0	1	1	0.5	1	1	0	1	1	1	1	1	0	1	1
0.5	1	0		1	0.5		1	1	0	0.5	0.5	1	1		1	1	1
0.5	1	0.5	0	1	1	1	1	0.5	0	1	1	1	1	1	0	1	1
1	1	1	1	1	1	1	1	1	1	0.5	0.5	1	1	1	1	1	1
1	0.5	1	0	1	0.5	0.5	1	0	0	0.5	0.5	1	1	1	1	1	1
	0.5		0		0.5	0.5		- 0		0.5	0.5		<u>'</u>	<u> </u>	·	<u> </u>	
0.5	1	1	1	0.5	1	0.5	1	0.5	1	0.5	1	1	1	1	1	1	1
0.5	1			0.5	1	0.5	1	0.5	0	0.5	1	1	1	1	1	1	1
0.5	1			0.5		0.5	1	1	1	0.5		1		1	1	1	1
0.5	1	0.5	0	1	0.5	0.5	1	1	0	1	0.5	1	1	1	0	1	1
0.5	1				0.5	0.5	1	1				1	1	<u> </u>	0		
0.5	1						1	1		0.5	0.5	1			0		0.5
0.5	0.5			1	1		0.5	0.5	0	1	1	1			1		1
1	0.3			1	1	1	1	1		1	1	1			1		1
0.5	1			1	1	1	1	1	1	1	1	1			1		1
1	1	0.5	1	1	1	0.5	1	1	1	1	1	1	1	1	1	1	1
0.5	1	0	1	1	1	0.5	1	0	1	1	0.5	1	1	0.5	1	1	1
0.5	1			1	0.5	1	1	0.5	1	1	0.5	1			1	1	1
0.5	1	0	'	<u> </u>	0.5		1	0.5		1	0.5	1	1	<u> </u>	1		1
1	1	1	0	0.5	0.5	1	1	1	1	0.5	0.5	1	1	1	1	0.5	0
1	1	0.5	0	0.5	0.5	1	1	0.5	1	0.5	0.5	1	1	1	1	0.5	0.5

1	1	0	0	0.5	0	1	1	0.5	1	0	0	1	1	1	1	1	1
0.5	1	1	1	0.5	0	1	1	1	1	0.5	0	1	1	1	1	0.5	1
0.5	1	1	1	0.5	0.5	1	1	1	1	0.5	0	1	1	1	1		1
0.5	1	1	0	1	1 0	0.5	1	0	1	0.5	1 0	1	1	1	1		1
1	1	1	0	0.5	0.5	0.5	1	1	1	0.5	0.5	1	1	1	1	1	1
0.5	1	0	0	0.5	0.5	1	1	0	1	0.5	0.5	1	1	1	1	0.5	1
0.5	0.5	1	1	0.5	1	1	0.5	0.5	1	0.5	1	1	0.5	1	1	1	1
0.5	1	1	1	1	1	0.5	1	0.5	1	1	1	1	1	1	1	0	0
0.5	1	1	1	1	1	1	1	0.5	1	1	1	1	1	1	1	1	1
1	1	1	0	0.5	1	0.5	0.5	0	0	0.5	0.5	1	1	1	0	1	1
1	1	0.5	0.5	0.5	0.5	0.5	0.5	1	0.5	0.5	0.5	1	1	1	0.5	0.5	0.5
1	1	1	1	0.5	1	0.5	1	1	1	0.5	1	1	1	1	1		1
1	1	1	1	1	1	0.5	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	0.5	0.5	0.5	1	0.5	0	0.5	1	1	1	1	0	1	1
1	1	1	0	1	1	0.5	1	0.5	1	1	1	1	1	1	1		1
0.5	1	1	0	1	0.5	0.5	1	0.5	0	1 1	0.5	1	1	1	1	1	1
1	1	1	1	0.5	0.5	1	1	1	1	0.5	0.5	1	1	1	1		1
1	1	1	1	0.5	1	0.5	1	1	1	0.5	1	1	1	1	1	1	1
1	1	1	1	0.5	1	1	1	1	1	0.5	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	0.5	0.5	1	1	1	1	1	1
0.5		1	1	0.5	0.5	0.5		0.5	1	0.5	0.5	1		1	1	1	0.5
0.5	1	0.5	0	1	1	0.5	1	0.5	0	0.5	0.5	1	1	1	1	1	1
1		1	1	0.5	1	1		0.5	1	0.5	0.5	1		0.5	1	1	1
1	1	1	0	1	1	0.5	0.5	1	0	1	1	1	0.5	0.5	1	1	1
1	1	1	1		0.5	0.5	1	0.5	1		0.5	1	1	0.5	1	1	1
0.5	1	0.5	1	1	1	0.5	1	0	1	1	0.5	1	1	1	1	1	1
1	1	0.5	1	0.5	0.5	1	1	0.5	1	0.5	0.5	1	1	1	1	1	1
0.5	0.5	0			0.5	0.5	0.5	0.5	0	0.5			0.5	1	1		0.5
0.5	1	1	1	1	1	1	1	0	1	0	0	1	1	0	1	0	0
0.5	1	1	1	1	1	0.5	1	0	1	0.5	0.5	1	1	0.5	1	0	1
1	1	0.5	1	0.5	0	1	1	0.5	1	0.5	0.5	1	1	0.5	1	0.5	1
1	1	0	0	0.5	1	0.5	1	0	1	0.5	0.5	1	1	0.5	1	1	1
0.5		0.5	0	1	1	0.5		0	1	0	0	1		0	1	0	0.5
0.5		1	1	1	1	0.5		0	1	0	0	1		0	0		1
0.5	1	1		0.5	0.5	1	1	0.5		0.5		1	1	0			1
0.5	1	1	0	1	1	1	0.5	0		1	0.5		1	0.5	1	0.5	1
1		1	0	1	1	1		0.5	0	0.5	0			0			1
1		1	0	1	1	1		0.5	0	0.5	0.5	1		0.5	1	1	1


would th	e intervei e propose	ntion(s) whed research	ting evider nich would h be effica tted mortal	eventuall cious in re	y benefit	would ti	he interver proposed	e best exist ntion(s) wh research l rogramme	ich would be likely to	eventually be effecti	y benefit	Q.2.3. V	ould you opinion	say that th	ne evidence is of high c	e upon wh juality?	ich your
Sachdev	Edmond	Rasmus.	Kramer	Mori	Bhutta	Sachdev	Edmond	Rasmus.	Kramer	Mori	Bhutta	Sachdev	Edmond	Rasmus.	Kramer	Mori	Bhutta
0	0.5	1	1	0.5	1	0	0.5	1	1	0.5	1	1	0.5	1	0.5	1	1
1	0	1	1	0.5	1	1	0	1	1	0.5	1	1	0	1	0.5	1	1
1	0.5	1	1	0.5	0	1	0.5	1	1	0.5	0	1	0.5	1	1	0	1
0	0	1	1	0.5	0	0	0	1	1	0.5	0	0	0	0.5	0.5	1	0
1	0	1	0	0	1	1	0	1	0	1	1	1	0	1	0	0	1
1	0	1	0	0		1	0		0	0	0			0.5		0	
1			1	1	0.5		1	0.5	1	0	1	0.5	1	0.5		1	0.5
1	1	1	1	1	0	1	1	0.5	1	0	0		1	0.5		0	1
0.5	1	0.5	0.5	1	0		1	0.5	0.5	0	0	0	1	0.5	0.5	0	1
0	0	1	0	1	1	0	0		0	1	0		0	1	0	1	1
0	0	1	0	0	0		0	0.5	0	1	0			0.5		1 1	0
0	0	1	0	1	0.5	0	0	0.5	0	0	0.5	0.5	0	0.5	0	1	1
0.5	1	1	0.5	1	0	0.5	1	1	0.5	0	0			0.5		0	
0.5	1	1	0.5	1	0		1	1	0.5	0	0			0.5		0	
0	1	1	0	0	1	0	1	0.5	0	1	0	0.5	1	1	0	0	1
0	1	1	0.5	0	0	0	1	0.5	0.5	1	0	1	1	1	0.5	0	1
0 0.5	1 1	1 1		1 1	0.5 0 0.5	0 0.5		1 1 1	0 0 1	0 0		0.5	1		0	1 0 0	
0.5					0.3	0.0	·							0.5	0.5		
					_								_	0.5	0.5		
1	1	1	1	0	1	1	1	0.5	1	1	1	0.5	1	0.5		1	1
1	1	1	0	0	1	1	1	1	0	1	1	0.5	1	0.5		0	1
				0			·	,	0			0.3	i i	0.5			
0.5	1	1	0.5	0		0.5		0.5	0.5	1	0	0.5		0.5		1	0
1	1	1		0					0.5					0.5		1	
1	0	1	0	0	1	1	0	0.5	0	1	1	0.5	0	0.5	0	1	1
0.5	1	1	0	0	1	0.5	1	1	0	1	1	0.5	1	0.5	0	1	1
1	0	1	0	0	1	1	0	1	0	1	1	1	0	1	0	0	1
1	1	1	1	1		1			1	1	1	1		1		1	
0.5	1 1	1	0	0	1	0.5			0	1				0.5		1	
1	1	1		0		1			1	1	1	0.5		0.5	1	0	
0.5	1	1	0	1	1	0.5	1	1	0	1	0	0	1	0.5	0	1	0.5
1	1	1	0.5	0	1	1	1	1	0.5	1	1	1	1	1	0.5	1	1
1	1	1	0	0	1	1	1	1	0	1	1	1	1	1	0	1	1
0.5	1	1	0	0	1	0.5	1	0.5	0		0.5	0.5	1	0.5		0	1
0.5	1	1	0	1	1	0	1	1	0	1	1	0.5	1	1	0	1	1
0	1	1	0	1	1	0	1	1	0	1	0	0	1	1	0	0	0.5

0.5	0	1	0	1	0	0.5	0	0.5	0	0	0	0.5	0	0.5	0	0	0
0.5	0	1	0	1	0	0.5	0	1	0	0	0	0	0		0	0	0
0.5	0	1		1	0	0.5	0		0	0		0			0	0	0
0.5	0	1	0.5	1	1	0	0		0.5		0.5	0	0	0.5	0.5		1
0.5	1	1		1	1	1	1		0.5	0	0.5			0.5	0.5	0	0
0.5	1	1			1	0.5	1		0	1	1	1	1	1	0	1	1
0.5	1	1	0	1	1	0.5	1	0.5	0	1	1	0	1	0.5	0	1	1
0.5	0.5	1	0	1	0	0.5	0.5	1	0	1	0	0.5	0.5	0.5	0	1	1
	1	1		1	1		1	1	1	1	1	0		0.5	1	1	1
	1	1	0.5	1	1		1	1	0.5	1	1	0	1	0.5	0.5	1	1
1	0.5	1	1	1	1	1	0.5	1	1	1	0.5	0	0.5	0.5	1	1	1
<u> </u>	0.5		'			'	0.5	'			0.5		0.5	0.5			'
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	0	1		1	1		0		0.5	1	0.5	1	0		0.5	1	1
0.5	0	1		1	0.5	0.5	1		0.5	1	0	0	0		0.5	0	1
0.5	0	1		1	2.0	0.5	0		1	1	Ů	0.5			0.5	1	
0.5	1	1	0	1	0	0.5	1	1	0	1	0	0	1	1	0	1	0
0	1	1	0	1	0	0	1	1	0	1	0	0.5	1	1	0	1	0
0	1	1		1	0.5	0	1	1	0	1	0	1		1	0.5	1	0
	0	1		1	1		0		1	1	0	0	0		0.5	1	0.5
0.5	1	1	0	0	1	0.5	1	1	0	0	1	0.5	1		0	0	1
1	1	1	0.5	1	1	1	1	1	0.5	1	1	1	1		0.5	1	1
0	1	1	0.5	1	0	0	1	1	0.5	1	0	1	1		0.5	1	0
1	1	1	1	0	1	1	1	1	1	0	1	0	1	1	0.5	0	1
1	1		1	1	1	1	1		1	1	1	0	1		0.5	1	1
	1	1	0.5	1	1		1	1	0.5	1	1	0	1	1	0.5	1	1
0.5	1	1	0.5	1	1	0.5	1	1	0.5	1	1	1	1	0.5	0.5	1	1
1	1	1	0.5	1	0	1	1	1	0.5	1	0	0	1	1	0	1	0.5
0.5	0	1	0	1	1	0.5	0	1	0	1	1	1	0	1	0	1	1
	1	1	0	1	0.5		1	1	0	1	0	0	1	1	0	1	0
	1	1			0		1		0	0		0					
0.5	0		0.5	1	0	0	0	1		1	0	0.5	0	1	0.5	1	0
0.5	0	1	0.5	1	0	0	0	1	0.5	1	0	0.5	0		0.5	1	0
1	1	1	1	1	1	1	1	1	1	1	1	1	1		0.5	1	0.5
0.5		1			1	0.5			0			0.5			0		1
	1		0		1		1		0		0				0		0
0.5	1	1	0.5		0		1		0.5		0				0		0
0.5	1	1	0.5	1	0	0	1	1	0.5	1	0	0.5	<u>'</u>		0	1	U
0.5	0	1	0	1	1	0	0	1	0	0	0	0	0	0.5	0	0	0
	1	1	0	1	1		1	0.5	0	1	1	0			0	1	1
0.5	0	1	0	1	1	0	0	1	0	1	1	0	0		0	1	1

	f this resear	esearch we	rs, would y ould be de improve de	ange in de you say the liverable (at the or the	implei endpoir	. Taking into ment the res its of the res affordability)	earch resu earch wou	ilts, would	you say the	hat the improve	enforcen (ii) interr intervent donor a	nent; govern nal and exter ions (e.g. pa agencies), we earch would sustainabi	mental int nal partne rtnership v ould you s be sustair	ersectoral rship requ with civil s ay that the nable (or w	coordinati ired for de ociety and endpoints ould impro	livery of external s of the
Williams	Manandhar	Singhal	Bhandari	lyengar	Mori	Williams	Manandhar	Singhal	Bhandari	lyengar	Mori	Williams	Manandhar	Singhal	Bhandari	lyengar	Mori
1	1	0	0	1	0.5	1	0	1	0	1	0.5	1	0	1	0	1	0.5
1	1	0	0	1	0.5	1	1	1	0	1	0.5	1	1	1	0	1	0.5
0	1	0	0	0	0.5	0	0	1	0	1	0.5	0	0	1	0	0.5	0.5
									_								
1	1	1	0	1	0.5	1	1	1	0	0.5	0.5	1	1	1	0	0.5	0.5
1	1	0	1	1	1	1	1	0	1	1	1	1	1	0	1	1	1
0	1	0	0	0	0	0	1	0	0	0	0	0	1	0	0	1	0
1	1	0	0	0	0.5	1	1	0	0	0	0.5	1	0	0	0	0.5	0.5
1	1	1	0		1	1	1	1	0	0.5	0	1	1	1	0	0	0
1	1	1	0			1	1	1	0		0	1	1	1	0	0.5	0
1	1	1	0.5		1	1	1	1	0.5		0	1	1	1	0.5		0
1	1	0	0.5		0.5	1	0	0	0.5	0	0.5	1	0	0	0.5	0.5	0.5
0	1	0	0.5	1		0	1	0		1	1	0	1	0		1	0
1	1	1	0	1	1	1	1	1	0	1	1	1	0	1	0	0	0
1	1	0	0		1	1	1	1	0	0	1	1	0	1	0	1	1
1	1	1	0	1	1	1	1	1	0	0	1	1	1	0	0	1	1
0	1	0	0	0	1	1	0	0	0	0	0	1	0	0	0	0	0
1	1	0	0	1	1	0	0	0	0	1	0	0	0	0	0	0	0
0	0	0	0		1	0	0			0	0	0	0	0	0	0	0
0	1 1	0 1 0	0.5 1 0	1	1 1 0.5	1 1	1	0 1 0	1	1	0 0.5	1 1	0 1 1	0 1 0	1	0.5 0	0 0.5
	1	0	0	1	0.5	1	1	0	0	1	0.5	1	1	0	0	0	0.5
1	1	1	1	1	1	0.5	1	1	1	1	1	0.5	1	1	1	1	1
1	1	1	0.5	1	1	1	1	1	1	0.5	1	1	1	1	1	0	1
0	1	1	0.5	1	1	1	1	1	1	1	1	1	1	1	1	1	1
				,							0					0.5	0
0	1	0	1	1	0	0	1	0	1	1		1	1	0	1	0.5	0
1	1	0				1	1			0.5		1	1	0		1	0
1	1	1	0.5			1	1			1		1	1	1	0.5	0.5	0
4	1	0	1	1	1	0	1	0	1	1	1	0.5	1	0	1	0.5	0
	1	U	<u> </u>	<u> </u>	<u> </u>	0	1	0	1	<u>'</u>	<u> </u>	0.5	<u>'</u>	0		0.5	0
1	1	0				1	1	0				1	1	0		0.5	0
0	1	1	0.5			0.5	1					0.5		1	0.5	1	1
0	1	0	0.5			0.5	1					0.5	1	0	0.5	0.5	0
1	1	1	0.5			0.5	1					0.5		1	0.5	0.5	1
1	1	0.5				0.5	1		1		1	0.5		1	0		1
0	1	1	1	1	1	0	1	1	1	1	1	0	1	1	0.5	0.5	1
1	1	0	0.5	1	1	1	1	0	1	1	1	1	1	0	0.5	1	1
1		0	1	1	1	0.5	1	0	1	1	1	0.5	1	0	0.5	1	1
0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	0	0.5	1
	0	0				0	0	0		0		0	0	0	0.5	0.5	

y that re	eaching of deliverable	f research ility, afford a capacity	endpoint	s would en d sustaina ly and indi	ermation, w ventually, a ability of he rectly rem	ssuming ealth		Q.4.2.	. To remov	ve 10% of a	ıll child de	aths?			Q.4.3	. To remo	ve 15% of :	all child de	aths?	
illiams 1	Manandhar	Sachdev	Edmond	Kramer	Bhandari	Bhutta	Williams	Manandhar	Sachdev	Edmond	Kramer	Bhandari	Bhutta	Williams	Manandha	Sachdev	Edmond	Kramer	Bhandari	Bhutta
1	0	1	0	1	0	1	1	0	0	0	1	0	1	0	0) 0	0.5	0	
	0	0	0		0	١,	,	0	١ ,	0	,	0	,	0	0		0	0.5		
	- 0	0	- 0		"	<u> </u>		0	<u> </u>	T .		0		-	-		,	0.5	-	
1	0	0	0	1	0.5	1	1	0	1	0	1	0	1	0	0		0 0	0.5	0	
1	0	1	0	1	0	0	0	0	0	0	1	0	0	0	0	(0	0.5	0	
1	1	0		0	1	1	0	0	1		0	1	0	0	0			0	1	
0	0	0	0	0	0	1	0	0	1	0	0	0	0				0		0	
1	1	0	1	0	0.5	1	1	0	1	1	0	0	0	0	0		1	0	0	
1	1	0	1	1	0.5	1	1	0	1	1	0.5	0	1	1	0	() 1	0.5	0	
1	1	0	1	1	0.5	0	1	0	1	1	0.5	0	0	0	0	(1	0.5	0	
1	1	1	1	0.5	0.5	0	0	0	C	1	0	0	0	0	0	(1	0	0	
1	1	1	0	0	0	1	0	1	c	0	0	0	0	0	0	(0	0	0	
0	0	0						0		1	0	0	0					0		
0	1	1	1	0	0.5	0	0	0	0	1	0	0	0	0	0	() 1	0	0	
1	0	0	0	0.5		0	1	0	0	0	0	0	0					0	0	
1	1	0	0				1	0	1	0	0.5	0	0						0	
0	0	0	0			0	0	0	0		0	0	0					0	0	
1	0	0	1		0	0	0	0	0	1	0.5		0) 1	0		
1	1	1	1	0		0	0	0	0		0	0	0		0	(0	0	
1	1	0	1	1		1	1	1	1	1	0.5	0	0	1	0	(1	0	0	
1	1	0	1	1	0.5	1	1	1	a	1	1	0	0.5	0	1	1	1	1	0	
1	1	0	1	1	0	1	1	1	0	1	1	0	1	0	1	,	1	1	1	
0	1	0	0		0	,	0	1	١,		0	0	0	0	0		0	0	0	
1	1	0	1		0	1	1	1	0		1	0	1	0		1		0.5		
1	1	0	1		0	0.5	0		0		0	0	0	0			1	1	1	
_ 1		0	1				1	1	0		0		1				1	0	0	
0	1	1	1	0	0	1	0	1	0	1	0	0	1	0	1	(1	0	0	
1	1	0	1	0	0	1	1	1	c	1	0	0	1	0	0	1	1	0	0	0
1	1	0	1	1	0		1	1	C		1	0	1	0	1	1	1	1	0	
1	1	0	1	0	0.5		0	1	0		1	0		1	1	1 .	1 1	1	0	
1	1	0	1	1	0		1	1	0		1	0	0.5	1	1	1	1	1	0	
0	1	0	1	0			0	1	1		0				0	(1			
\neg																				
1	1	0	1	1	0	1	0	1	1	1	0.5	0.5	1	0	1	(1	0	0	
1	1	1	1	0	0.5	1	1	1	c	1	0	0	1	0	0		1	0	0	0
1	1	1	1	0	0	1	0	1	d	1	0	0	1	0	0	(1	0	0	0
0	1	1	1	0	1	1	0	1	C	1	0	0	1	0	0	(1	0	0	
				0	0	0	0	0	o c		0	0	0	0	0	(0	0	

distributio	on of dise	ntext, wou ease burde h affects m the popu	n primarily nainly the i	y addresse	ed by the	propose	d research	agree that a could be o	of help to	all segmer	nts of the	overal	potential	to improv	e proposed re equity in ger term (e.	disease l	ourden
Victora	Lawn	Tomlinson	Biloglav	lyengar	Rudan	Victora	Lawn	Tomlinson	Biloglav	lyengar	Rudan	Victora	Lawn	Tomlinson	Biloglav	lyengar	Rudan
1	1	1	1	1	1	1	1	1	1	0.5	1	0.5	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	0.5	1	1	1	1	1
1	1	1	1	1	,	1	1	1	1	0	1	0.5	1	1	1	1	
										-			·				
1	1	0.5	0.5	1	0	1	0.5	0.5	1	1	1	0.5	0.5	0	1	1	
1	1	1	0.5	1	0	1	1	1	1	1	1	0.5	1	1	1	1	
1	0.5	0	0.5	0	0	1	0.5	1	1	0	1	0.5	0.5	1	0.5	1	
1	1	1	0.5	1	1	1	0.5	1	0.5	0	1	0.5	0.5	1	0.5	1	
1	1	1	1	1	1	1	1	1	0.5	1	1	0.5	1	1	0.5	0	
1	1	0.5	0	0	0	1	0.5	1	0.5	1	1	0.5	0.5	1	0.5	0	
1	1	1	1	1	1	1	0.5	1	1	1	1	0.5	0.5	1	1	1	
1	1	0.5	1	1	0	1		1	1	1	1	0.5	0.5	1	1	1	
1	1	0	1	1	1	1	1	0	0.5	1	1	0.5	1	0	1	0	
1	1	0.5	1	1	1	1	0.5	0.5	1	1	1	0.5	0.5	0		0	
1	1	0.5	1	1	1	1		0.5	1	1	1	0.5	0.5	0.5		1	
1	1	1	0.5	1	1	1	0.5	1	1	0	1	0.5	0.5	1	0.5	1	
1	1	0.5	0.5	1	1	1	0.0		1	1	1	0.5	0.0	0.5		0	
1	1	0	0.5	0		1	0	0	1	0	1	0.5	0	0	0	1	
1 1	1 1	1 1 0.5	1 1 0.5	1 1 0		1 1		1 1	1 1	1 1 0	1 1	0.5 0.5 0.5	0.5 0.5	1 1	1 1	1 1	
		0.0	0.0		0.0							0.0					
1	1	0.5	1	1	1	1	0.5	0.5	1	1	1	0.5	1	1		0	
1	1	0.5	1	1	1	1	0.5	1	1	1	1	0.5	1	1	1	1	
1	1	1	1	1	1	1		1	1	1	1	0.5	1	1		1	
1	1	1	1	1	0	1	0.5	1	1	1	1	0.5	0.5	1		1	
1	1	1	1	0.5		1	1	1	1	0.5	1	0.5	1	1		1	
1	1	1	1	1	1	1	1	1	1	1	1	0.5	1	1	0.5	1	
1	1	0	0.5	0.5	1	1		0.5	0.5	1	0.5		1	0.5		1	
1	1	0.5	0		0				0.5	1	0.5		1	0.5		1	
1	1	0	0	0	0	1	0.5	0.5	0.5	1	0.5	0.5	1	0	1	0	
1	1	0.5	1	0.5					1	1	1		1	0.5		0	
1	1	1	0	0	0	1	0.5	1	1	0	1	0.5	1	1	1	1	
1	1	1	1	1	1	1	1	1	0.5	1	1	0.5	1	1	1	1	
1	1	1	1	1	1	1	1	1	1	1	1	0.5	1	1	1	1	
1	1	1	1	1	1	1	1	1	1	1	1	0.5	1	1	1	1	
				_					اء		_					_	
1	1	1	0.5	0	0.5	1	0.5	1	0	0.5	0	0.5	1	1	1	0	0.
1	1	1	0.5	0	0.5	1	1	1	0	0.5	0	0.5	1	1	1	0.5	0.

1	0.5	0.5	0.5	1	0	1	0	0.5	0.5	0.5	0.5	0.5	0.5	1	0.5	0	0
1	1	0.5	0.5	1	1	1	1	0.5	0.5	1	0	0.5	1	1	0.5	1	0
1	1	0.5	0.5	0.5	1	1	1	0.5	0.5	0.5	0.5	0.5	1	1	0.5	1	0.5
1	1	0.5	0		0.5	1	0	1	1		0	0.5	0.5	1	1		0.5
1	1	0.5	1	1	0.5	1	1		0.5	1	0	0.5	1	1		1	1
1	1	1	1	0	1	1	0.5	1	0.5	0	0.5	0.5	0.5	1	1	1	1
1	1	0	0.5	1	1	1	0.5	0	0.5	0	1	0.5	1	0.5	0.5	1	1
1	1	0.5	1	1	0.5	1	1	0.5	1	1	0.5	0.5	1	1	1	0	1
1	1	1	0	0	1	1	1	1	1	0	1	0.5	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	0.5	1	1	1	1	1
1	1	1	1	0	1	1	0.5	1	1	0	0	0.5	1	1	1	0	1
	,	0	0	,	0	1	0.5	0.5	إر	,				0.5			ارا
1	1	1	0.5	1	0.5	1	0.5	0.5	0.5	1	0.5	0.5		0.5		1	
1	1	1	0.5	1	0.0	1	0.5		0.5	1	0.5	0.5	1	1		0	1
1	1	1	1	1	1	1	0.5		0.5	1	0.5	0.5	0	1	1	1	
1	1	0.5	0.5	1	0.5	1	1	0.5	0.5	1	0.5	0.5	1	0.5	1	1	1
1	1	0	0.5	1	0.5	1		0	1	1	0.5	0.5		0.5	1	1	1
1	1	0	0.5	0	0.5	1		0	1	0	1	0.5		0	1	0	1
1	1	0	0.5	1	1	1		0	1	1	1	0.5		0.5	1	1	1
1	1	1	1	1	1	1		1	1	1	1	0.5		1	1	1	1
1	1	1	1	1	1	1		1	1	1	1	0.5		1	1	0	1
1	1	1	1	1	1	1	1	1	0.5	1	0.5	0.5	1	1	1	1	1
1	1	0.5	1	1	1	1	1	1	0.5	1	0	0.5	1	1	1	1	1
1	1	0	1	0	1	1	0	0.5	0.5	0	0.5	0.5	0.5	1	1	1	1
1	1	0	1	0	1	1	1	0	0.5	1	0.5	0.5	1	1	1	1	1
1	1	0	1	1	1	1	0.5	0	1	0	1	0.5	1	0.5	1	1	1
1	1	0	0.5	0	1	1	0.5	0	0	0	0	0.5	1	0.5	1	1	
T T	-	0	0.5	0		-	0.5	0	0			0.5		0.5	'		
1	1	0.5	0.5	1	0.5	1	0.5	0.5	1	0	1	0.5	1	0.5	1	1	1
1	1	1	1	1	1	1	0.5	1	0.5	0	0.5	0.5	1	1	1	1	1
1	1	1	1	1	1	1	0.5	1	0.5	0	0.5	0.5	1	1	1	1	1
			Ţ,				2.0	,	2.0		2.0	2.0					
1	1	0	0.5	0	0.5	1	0.5	0	0.5	0	0.5	0.5	0.5	0	0.5	0	0.5
1	1	0	1	0.5	0.5	1	0.5	0	0	0	0	0.5	0.5	0	0	1	0
1	1	1	1	0	1	1	0	1	0	0	0	0.5	0.5	1	0.5	0	1
		- 1			- 1		3					0.0	5.5		0.0		
1	1	1	1	1	1	1	0.5	1	0.5	1	0.5	0.5	1	1	1	1	1
1	1	0.5	1	1	1	1	1	0.5	0.5	0	0	0.5	1	0.5	0.5	0	0.5
1	1	0	0.5	0.5	0.5	1	0	0	0	0	0	0.5	0	1	0	1	0
1	1	0	1	1	1	1	0		0	0	0	0.5	0	0.5		0	
1	1	0	0.5	0	0.5	1	0.5		0	0		0.5	0.5	0.5			
1	1	0	0.5	1	0.5	1	0	0	0	0	0	0.5	0	0	0	0	0
1	1	0.5	0.5	1	0.5	1	1	0.5	0.5	1	0	0.5	1	0	0.5	1	0
1 T	1	0.5	0.5	1	0.5	1	0.5		0.5	0	0	0.5	1	0	0.5	1	0

Table w3. The final list with CHNRI research priority scores (RPS) and average expert agreement (AEA) for all proposed research ideas.

RANK	RESEARCH QUESTION	N	ANSWER	EFFECTIV	DELIVER	BURDEN	EQUITY	TOTAL	TOTAL	AEA
	Idenfication of LBW infants within 24-48 hours of birth for	24	94	89	89	71	89	(unwgh) 86.5	(weigh) 84.2	0.821
1	additional care among among those born at home Approaches to improve quality of care of LBW infants in	33	81	100	94	79	72	85.2	83.9	0.808
2	health facilities									
	Identification of current behaviours, and barriers and supports for optimal home care practices, including care	26	86	78	86	74	97	84.2	82.7	0.776
3	seeking for illness									
4	Approaches to increase the use of antenatal corticosteriods in preterm labour in resource-poor settings	50	81	91	100	71	81	84.6	82.4	0,819
- 4	Effective interventions for achieving early initiation of breastfeeding	53	86	100	97	67	72	84.4	81.5	0.790
5	including feeding mode and techniques for those unable to suckle directly from the breast									
	Approaches to improve access to care for the subset of	35	94	82	78	76	81	82.2	81.4	0.748
6	LBW infants who need hospital care Improved criteria for identifying LBW infants who need to be	32	86	97	81	71	78	82.6	80.8	0.754
7	cared for in a hospital	32		97		, , , , , , , , , , , , , , , , , , ,	/6	02.0		0.734
8	Effectiveness of improved cord care (e.g. chlorhexidine application)	64	94	91	81	60	86	82.4	78.8	0.787
	Comparison of KMC and alternative methods of keeping the LBW	61	89	97	78	55	97	83.1	78.6	0.828
9	infant warm in community settings Approaches to increase the use of antibiotics for premature	51	94	81	75	60	97	81.5	78.2	0.757
10	prolonged rupture of membranes in resource-poor settings									
	Approaches to increase the proportion of LBW infants who receive additional care before discharge among those born in	23	75	75	94	67	86	79.4	77.4	0.735
11	a hospital									
	Development of new simple and effective interventions for		75	94	86	60	89	80.7	77.2	0.738
12	providing thermal care to LBW infants, if KMC is not acceptable to the mother									
	Effect of a package of interventions (including delaying first pregnancy, birth spacing, anti-malarial therapy, prophylactic	37	78	86	78	62	94	79.6	76.8	0.735
	antibiotics for high risk women, dietary interventions and									
13	micronutrients on the incidence of preterm birth and growth retardation									
13	Identification of optimal timing and content of home visits	28	81	81	75	62	97	79	76.4	0.735
14	and potential workers to do the home visits Identify which infections in LBW infants can be treated with oral	66	72	75	83	76	75	76.3	76.3	0.730
	antibiotics and which ones require intrmuscular or intravenous	66	12	75	03	76	/5	76.3	76.3	0.730
15	antibiotics Approaches to improve access to quality antenatal care	38	92	78	78	52	92	78.3	74.3	0.789
	including interventions to prevent LBW (e.g. IPT, syphilis	30	32	70	70	52	32	70.5	74.5	0.703
16	treatment) Effectiveness of micronutrient supplementation (e.g. zinc. vitamin	56	97	75	94	48	81	70	74.2	0.776
17	D, iron) in improving linear growth and survival of LBW infants		97	75	94	40	01	79	74.2	0.776
18	Effect of peer-supported home care interventions on survival	29	86	53	83	57	92	74.2	71.8	0.668
18	of preterm infants of >32 weeks gestation Incidence of intrauterine infection (chorioamnionitis) in resource	8	69	83	62	64	81	71.9	70.6	0.645
	poor communities and its influence on preterm birth Effectiveness of improved skin care (e.g. sunflower oil massage)	62	94	56	94	40	92	75.4	70.2	0.768
	Effectiveness of plastic bags to maintain temperature of unstable	63 62	92	60	75	48	91	73.4	69.3	0.743
21	preterm infants Population-based estimates of the contribution of LBW (overall,	2	83	75	69	40	97	73.1	68.1	0.724
	preterm, and SGA) to neonatal mortality as primary or contributory	_	00	,	00		0.		5511	02
22	cause at global and regional levels Sentinel sites for population-based ascertainment of all live and	1	97	72	58	40	94	72.5	67.8	0.702
00	stillbirths, and their birth weights and gestational ages (from 24									
23	weeks gestation) in various regions. Approaches to improve utilization of effective ANC (at least	39	83	56	74	45	97	71	67.2	0.687
24	4 visits)	5	89	50	83	39	89	74.4	00.0	0.750
25	Contribution of adolescent pregnancy and short birth intervals to causation of preterm birth and intrauterine growth restriction	5	09	56		39	09	71.1	66.3	0.756
00	Early non-invasive continuous positive airways pressure for	67	83	90	39	55	75	68.4	66.3	0.700
26	preterm infants with respiratory distress Estimation of the contribution of inadequate resuscitation of	52	64	81	56	62	72	66.8	65.9	0.675
	preterm infants to their mortality and effectiveness of									
27	interventions to improve resuscitation Compare the effectiveness of facility, family and community	30	69	67	67	48	94	69	65.7	0.648
	based health education programmes for improve preventive									
28	practices Identifying micronutrients whose supplementation improves	70	83	69	72	38	83	69.2	64.5	0.696
	functional outcomes including survival in distinct subgroups		00	00	,_	00		00.2	0.10	0.000
29	of preterm and growth retarded infants Development of new simple and effective interventions that	76	69	74	83	48	64	67.6	64.3	0,651
	prevent infections and improve survival (e.g. new emollients	70	03	/4	65	40	04	07.0	04.5	0.031
30 31	for massage) Risk factors for lactational failure in LBW infants	00	70	04			70	64.8	63.4	0.611
31	Prevalence and timing of hypoglycaemia in preterm and	22 36	75 94	64 61	53 81	55 33	78 72	68.5	63.4	0.666
32		00	0.4	00	0.1	00	7.	07.0	20.0	0.050
	Relative efficacy of delayed and early cord clamping for preterm and SGA infants on functional consequences like	69	84	83	61	36	75	67.9	62.9	0,650
33	anaemia, respiratory problems and jaundice									
	Test the effectiveness of interventions to increase awareness about frequency of breastfeeding, and test	31	64	56	67	50	78	62.8	60.8	0.581
34	interventions that enable women to feed frequently									
	Development and evaluation of nterventions to improve the	71	83	61	53	40	83	64.3	60.8	0.625
35										
36	Relationships between maternal height, weight (BMI) and birthweight in populations subject to nutritional stunting	11	100	50	69	24	92	67	60.7	0.773
	Incidence of bacterial vaginosis in resource poor communities and	9	67	69	67	45	69	63.5	60.6	0.592
37	its influence on preterm birth Safety and efficacy of high volume breastmilk feeding for preterm	57	75	64	59	42	78	63.5	60.2	0.602
	and low birth weight infants	01	13							
38		0-								
38	Identification and differentiation of prematurity and term	25	69	67	92	19	92	67.7	60	0.762
38		25 20	69 81	67	92 62	19	89	64.7	59.6	0.762

	Population studies to determine mortality associated with preterm birth at gestations 24-28 weeks, 28-32 weeks and 32-36 weeks	3	83	69	33	38	92	63.2	59.5	0.657
41	using verbal autopsy, and the time of death (first day, first week, first month, post-neonatal period)									
	Identification and evaluation of AFASS replacement feeding	54	69	69	75	29	83	65	59.3	0.615
42	options for preterm infants of HIV positive mothers Attitudes of health providers to viability of preterm, LBW	34	100	58	50	45	53	61.3	59.2	0.644
43	infants							01.0	00.2	
	Determine the minimum effective maternal corticosteroid	68	78	84	58	38	56	62.8	58.9	0.643
44	exposure in preterm labour Perceptions and attitudes of families and communities,	27	94	47	53	36	81	62.1	58.5	0.654
45	including TBAs, to viability of preterm, LBW infants									
46	Relationship between late anaemia and infant mortality Determine the degree to which the burden of LBW could be	21 40	92 75	39 72	81 47	24 45	86 61	64.2 60.2	58.3 57.9	0.752 0.578
	ameliorated by appropriate nutritional interventions (e.g.							00.2	0110	0.010
47	food or micronutrient supplementation) administered during									
47	pregnancy Development of safer and more effective tocolytic therapy	81	63	70	62	43	64	60.4	57.6	0.596
48	that can be provided orally									
49	Approaches for the prevention of adolescent pregnancy Optimal timing of complementary feeding for preterm infants.	46 58	67 89	50 56	64 67	40 26	81 72	60.3 61.8	57.4 56.6	0.622 0.647
50	particularly those of 28-32 weeks of gestation									
51	Identification of minimum weight gain cutoff for intervention in breast milk fed SGA infants	16	78	50	72	26	83	61.9	56.5	0.644
- 31	Approaches to reduce smoking and alcohol exposure in	45	86	44	63	38	63	59.1	56.2	0.596
	adolescents and young women, particularly in transitional									
51	countries Correlation of early growth rate (linear and ponderal) with infant	14	92	36	67	31	75	60.1	56	0.656
	mortality risk and neurological outcome in preterm infants fed		02	00	,		, ,	00.1		
53	breastmilk Compare the safety and effectiveness of cup and gavage feeding	55	92	47	67	26	64	59.1	54.3	0.636
54	in preterm infants									
	Determine the degree to which the burden of LBW could be	47	81	78	23	31	75	57.5	53.5	0.658
	ameliorated by appropriate nutritional interventions (e.g. food or micronutrient supplementation) administered before									
55	pregnancy									
56	Identification of minimum weight gain cutoff for intervention in breastmilk fed preterm infants	15	81	50	64	21	78	58.7	53.2	0.652
	Incidence of chronic gingivitis or other chronic infective processes	10	67	50	77	33	57	56.7	53.1	0.601
57	in the mother on preterm birth Efficacy of routine "birth" vaccines given at different	65	73	62	41	36	64	55.2	52.3	0.639
	postconceptional ages and weights in preterm and growth	03	/3	02	71	"	04	35.2	32.3	0.000
58	retarded LBW infants		0.4	0.1			70	510	51.1	0.000
59	Approaches to improve utilization of ARSH, Family Planning and STI services	44	81	24	61	33	72	54.2	51.4	0.632
- 39	Develop mathematical models for asessing relative contribution of	4	79	39	69	21	72	56.3	51.2	0.626
60	LBW amongst multiple and competing causes of death Development of risk-based growth reference for preterm and SGA	60	78	53	58	17	78	56.7	50.7	0.646
61	infants	00						30.7	30.7	
62	Prevalence of hypovitaminosis D in pregnancy and its contribution to LBW at term	12	78	56	39	21	83	55.4	50.4	0.641
- 02	Approaches to improve access to Adolescent Reproductive	43	78	24	58	33	72	53	50.4	0.621
63	and Sexual Health (ARSH), Family Planning and STI services	49	81	53	43	14	81	54.0	40.0	0.597
64	Effectiveness of counselling during pregnancy for prevention, recognition and management of LBW infants	49	01	53	43	14	01	54.2	48.3	0.597
	Contribution of psychosocial and physical stress (manual labour)	7	61	31	39	40	72	48.7	47.7	0.533
65	to preterm birth and intrauterine growth retardation Evaluation of the role of probiotics in preventing sepsis in	79	78	59	47	33	33	50	47.6	0.546
66	LBW infants									
07	Development of simple methods of identification of	82	73	50	58	24	53	51.7	47.5	0.615
67	asymptomatic bacteriuria and bacterial vaginosis Evaluate social constraints to the acceptance and use of	48	67	67	25	29	67	50.7	47.3	0.591
68										
69	Development of simple, precise methods for measuring linear growth of preterm infants	59	83	53	53	19	53	52.2	47.3	0.640
	Evaluate the possibility of changing existing government	41	72	53	39	24	67	50.9	46.9	0.586
	food supplementation programmes to adopt the use of foods that meet demonstrated needs of the pregnant									
70	women who will be served by these interventions									
	Development of safe and effective protein "fortifiers" to	74	75	47	31	31	58	48.6	46.1	0.607
71	promote early neonatal growth in preterm infants of <32 weeks gestation in resource poor settings									
- / 1	Identify risk factors for "eating down" in areas where gestational	13	56	28	61	26	72	48.6	45.3	0.654
72	weight gain is low Contribution of preterm birth and intrauterine growth retardation to	17	86	39	22	14	81	48.4	40.0	0.716
	stunting in childhood (increased risk of LBW in next generation of	17	00	39	22	14	01	40.4	43.6	0.716
73	girls subjected to stunting)	70	0.4		0.4		40	40.0	44.5	0.040
74	Development of safe and effective pharmacological methods of stimulating breastmilk supply	73	64	41	34	33	42	42.8	41.5	0.618
	Approaches to reduce smoking in fathers of unborn chidren	42	67	25	39	21	50	40.4	37.8	0.632
75	during pregnancy	77	47	54	6	36	39	36.3	36.2	0,629
76	Development of interventions for activating endogenous surfactant production through gene switching	''	47	54	0	36	39	30.3	30,2	0.029
	Relationship of sleeping arrangements and infections with SIDS in	19	56	56	6	26	44	37.5	35.8	0.676
77	LBW infants Determine the degree to which second-hand smoke contributes to	6	64	42	22	10	56	38.6	34.3	0.703
78	LBW among non-smoking women									
	Development of methods for harmonising the composition of expressed breastmilk to infant requirements without	72	50	59	13	19	42	36.7	33.9	0.671
79	constraining output									
13	Develop maternal biochemical indicators predicting low birth	80	69	28	18	26	31	34.3	33.5	0.633
80	weight Relationship of the home environment and neurocognitive	18	53	50	28	0	58	37.8	31.9	0,711
	weight	18 78	53 53	50	28		58	37.8 33.2		0.711